int epochs
int n
double[] probabilities
double weight
Vec numericalValues
int[] categoricalValues
CategoricalData[] categoricalData
Classifier[] voters
Vec[] classCoefficents
Classifier[] oneVsAlls
Classifier baseClassifier
CategoricalData predicting
boolean concurrentTraining
boolean useScoreIfAvailable
Classifier baseClassifier
Classifier[][] oneVone
boolean concurrentTrain
CategoricalData predicting
CategoricalResults cr
Regressor regressor
List<E> rocVecs
DistanceMetric dm
DenseSparseMetric dsdm
double[] summaryConsts
CategoricalData predicting
ODE[] odes
double m
MultivariateDistribution baseDist
List<E> dists
double[] priors
boolean usePriors
CategoricalData predicting
double[] countArray
Map<K,V> valid
int[] realIndexToCatIndex
int[] catIndexToRealIndex
int[] dimSize
int predictingIndex
double[][][] apriori
double[][] wordCounts
double[] totalWords
double priorSum
double[] priors
double smoothing
boolean finalizeAfterTraining
boolean finalized
double[][][] apriori
ContinuousDistribution[][] distributions
NaiveBayes.NumericalHandeling numericalHandling
double[] priors
boolean sparceInput
double[][][] apriori
OnLineStatistics[][] valueStats
double priorSum
double[] priors
boolean sparseInput
int dependent
int predTargets
int depTargets
double[][][][] counts
double[][] priors
double priorSum
DirectedGraph<N> dag
Map<K,V> cpts
CategoricalData predicting
double[] priors
boolean usePriors
int[] ri
int maxParents
Classifier weakLearner
int maxIterations
List<E> hypoths
List<E> hypWeights
CategoricalData predicting
Classifier weakLearner
int iterations
double coef
double expo
CategoricalData predicing
Classifier[] hypoths
Classifier baseClassifier
Regressor baseRegressor
CategoricalData predicting
int extraSamples
int rounds
boolean simultaniousTraining
Random random
List<E> learners
Classifier weakLearner
int maxIterations
List<E> hypoths
List<E> hypWeights
CategoricalData predicting
double lambda
double fScaleConstant
List<E> baseLearners
Regressor baseLearner
int maxIterations
double zMax
Classifier weakLearner
int maxIterations
List<E> hypoths
List<E> hypWeights
CategoricalData predicting
Classifier weakLearner
int maxIterations
List<E> hypoths
List<E> hypWeights
CategoricalData predicting
int weightsPerModel
UpdateableClassifier aggregatingClassifier
List<E> baseClassifiers
UpdateableRegressor aggregatingRegressor
List<E> baseRegressors
ContinuousDistribution dist
int iterations
Classifier weakL
Regressor weakR
CategoricalData predicting
Classifier[] hypotsL
Regressor[] hypotsR
BinaryScoreClassifier base
int folds
double holdOut
BinaryCalibration.CalibrationMode mode
double[] outputs
double[] scores
double A
double B
double maxIter
double minStep
double sigma
double correct
double total
double beta
Matrix errorMatrix
double loss
double weightSum
double nudge
double tp
double tn
double fp
double fn
int kn
int k
int maxIterations
double eps
VectorCollectionFactory<V extends Vec> vcf
CategoricalData predicting
VectorCollection<V extends Vec> vc
List<E> vecList
CategoricalData predicting
Classifier classifier
Regressor regressor
int k
DistanceMetric dm
KernelFunction kf
VectorCollectionFactory<V extends Vec> vcf
VectorCollection<V extends Vec> vc
int k
boolean weighted
DistanceMetric distanceMetric
CategoricalData predicting
VectorCollectionFactory<V extends Vec> vcf
VectorCollection<V extends Vec> vecCollection
jsat.classifiers.knn.NearestNeighbour.Mode mode
Vec w
double alpha
double B
double C
int k
boolean useBias
double bias
Vec[] ws
double[] bs
LossFunc loss
double lambda0
Optimizer2 optimizer
double tolerance
boolean useBiasTerm
ClassificationDataSet D
LossMC loss
LossFunc loss
GradientUpdater gradientUpdater
double eta
DecayRate decay
Vec[] ws
GradientUpdater[] gus
double[] bs
int time
double lambda0
double lambda1
double l1U
double[][] l1Q
boolean useBias
Vec w
double bias
boolean useBias
double C
int maxIterations
Vec w
double b
double beta
double v
double gamma
double sigma
double C
double alpha
int maxOuterIters
double e_out
boolean useBias
int maxLineSearchSteps
Vec w
Matrix sigmaM
Vec sigmaV
NHERD.CovMode covMode
double C
Vec Sigma_xt
int epochs
double C
double eps
Vec w
PassiveAggressive.Mode mode
boolean useBias
boolean aggressive
Vec w
double bias
double C
double eta
double phi
double phiSqrd
double zeta
double psi
SCW.Mode mode
Vec w
Matrix sigmaM
Vec sigmaV
Vec Sigma_xt
boolean diagonalOnly
double eta
Vec[] w
double[] bias
double C
boolean useBias
PassiveAggressive.Mode mode
double[] loss
IndexTable it
Vec w
int K
double learningRate
double threshold
double gravity
int time
int[] t
int epochs
boolean clipping
double regularization
double tolerance
double initialLearningRate
double alpha
DecayRate learningRateDecay
StochasticMultinomialLogisticRegression.Prior prior
boolean standardized
boolean useBias
int miniBatchSize
Vec[] B
double[] biases
int epochs
double lambda
StochasticSTLinearL1.Loss loss
Vec w
double bias
double[] obvMin
double[] obvMax
boolean reScale
double minScaled
double maxScaled
KernelTrick k
int budget
double eta
double reg
double maxCoeff
LossC lossC
boolean uniformSampling
Random rand
List<E> vecs
List<E> selfK
DoubleList alphas
List<E> accelCache
double[] dist
double eta
DoubleList alpha
List<E> vecs
double curNorm
KernelTrick k
double R
Random rand
CSKLR.UpdateMode mode
double gamma
List<E> accelCache
double eta
double curNorm
double R
int T
CSKLR.UpdateMode mode
double gamma
int epochs
KernelTrick k
List<E> S
List<E> f_s
List<E> alphas
Math.signum(double)
List<E> accelCache
DoubleList kTmp
double rho
double C
KernelTrick K
Vec[] I
double[] s
int size
int curPos
int budget
double U
double Bconst
double Q
double M
boolean selfTuned
LossFunc loss
KernelTrick kernel
double lambda
double eta
KernelPoint.BudgetStrategy budgetStrategy
int budgetSize
double errorTolerance
int time
KernelPoint kpoint
KernelPoints kpoints
int epochs
KernelTrick k
double eta
double R
double G
double curSqrdNorm
LossC lossC
boolean useAverageModel
int t
int last_t
int burnIn
DoubleList alphaAveraged
List<E> vecs
DoubleList alphas
DoubleList inputKEvals
List<E> accelCache
Random rand
KernelTrick k
double eta
DoubleList alpha
List<E> S
List<E> cacheAccel
Matrix InvK
Matrix InvKExpanded
double[] k_raw
boolean useMarginUpdates
int inputSize
int outputSize
BackPropagationNet.ActivationFunction f
DecayRate learningRateDecay
double momentum
double weightDecay
int epochs
double initialLearningRate
BackPropagationNet.WeightInitialization weightInitialization
double targetBump
int batchSize
int[] npl
List<E> Ws
List<E> bs
double targetMax
double targetMin
double targetMultiplier
SGDNetworkTrainer network
int[] hiddenSizes
int batchSize
int epochs
DecayRate learningDecay
int iterations
double learningRate
DistanceMetric dm
LVQ.LVQVersion lvqVersion
double eps
double mScale
double stoppingDist
int representativesPerClass
Vec[] weights
int[] weightClass
int[] wins
SeedSelectionMethods.SeedSelection seedSelection
VectorCollection<V extends Vec> vc
VectorCollectionFactory<V extends Vec> vcf
Classifier localClassifier
Classifier[] localClassifeirs
double learningRate
double bias
Vec weights
int iteratinLimit
int numCentroids
RBFNet.Phase1Learner p1l
RBFNet.Phase2Learner p2l
double alpha
int p
DistanceMetric dm
boolean normalize
Classifier baseClassifier
Regressor baseRegressor
List<E> centroidDistCache
List<E> centroids
double[] bandwidths
int[] layerSizes
double eta
double p_i
int p_i_intThresh
Random.nextInt()
to get the correct dropout probabilitydouble p_o
int p_o_intThresh
Random.nextInt()
to get the correct dropout probabilityGradientUpdater updater
WeightRegularizer regularizer
WeightInitializer weightInit
BiastInitializer biasInit
List<E> W
List<E> W_deltas
List<E> W_updaters
List<E> B
List<E> B_deltas
List<E> B_updaters
List<E> layersActivation
DecayRate etaDecay
int time
Matrix[] activations
Matrix[] unactivated
Matrix[] deltas
int somWidth
int somHeight
int maxIters
KernelFunction kf
double initialLearningRate
DecayRate learningDecay
DecayRate neighborDecay
DistanceMetric dm
VectorCollectionFactory<V extends Vec> vcFactory
Vec[][] weights
CategoricalResults[] crWeightPairs
VectorCollection<V extends Vec> vcCollection
List<E> weightUpdates
double c
double stndDev
double maxNorm
double C
double tolerance
KernelKMeans clusters
int m
int l_max
int l_early
int k
Map<K,V> early_models
long cache_size
double b
double b_low
double b_up
double C
int i_up
int i_low
double[] fcache
double dualObjective
int epochs
double reg
int batchSize
boolean projectionStep
Vec w
double bias
double regularization
int iterations
double b
double b_low
double b_up
double C
double tolerance
double eps
double epsilon
int maxIterations
boolean modificationOne
double[] fcache
int i_up
int i_low
double[] alpha_s
boolean[] I0
boolean[] I0_a
boolean[] I0_b
boolean[] I1
boolean[] I2
boolean[] I3
boolean[] I4
double[] label
Vec weights
double nu
int iterations
double burnIn
IndexTable it
KernelTrick kernel
List<E> vecs
double[] alphas
SupportVectorLearner.setAlphas(double[])
should be
called with a reference to itself or the array where the final alphas are
stored. This will initialized any accelerating structures so that
SupportVectorLearner.kEvalSum(jsat.linear.Vec)
can be called.SupportVectorLearner.CacheMode cacheMode
List<E> accelCache
double[][] fullCache
ConcurrentCacheLRU<K,V> partialCache
double[] specific_row_cache_values
SupportVectorLearner.accessingRow(int)
int specific_row_cache_row
double[] availableRow
int cacheConst
int evalCount
int cacheEvictions
double C
double tolerance
short[] label
Vec weights
double T_a
double S_a
int subEpochs
int splittingAttribute
CategoricalData predicting
CategoricalData[] catAttributes
int numNumericFeatures
List<E> boundries
List<E> owners
CategoricalResults[] results
double[] pathRatio
double[] regressionResults
ImpurityScore.ImpurityMeasure gainMethod
boolean removeContinuousAttributes
int minResultSplitSize
int maxDepth
int minSamples
DecisionTree.Node root
CategoricalData predicting
TreePruner.PruningMethod pruningMethod
double testProportion
DecisionStump baseStump
DecisionStump stump
DecisionTree.Node[] paths
ExtraTree baseTree
boolean useDefaultSelectionCount
boolean useDefaultStopSize
CategoricalData predicting
ExtraTree[] forrest
int forrestSize
int stopSize
int selectionCount
CategoricalData predicting
boolean binaryCategoricalSplitting
int numNumericFeatures
ImpurityScore.ImpurityMeasure impMeasure
TreeNodeVisitor root
CategoricalData predicting
CategoricalData[] attributes
jsat.classifiers.trees.ID3.ID3Node root
ModifiableCountDownLatch latch
boolean weightByDepth
ClassificationScore cs_base
RegressionScore rs_base
int numFeatures
CategoricalData predicting
int extraSamples
int featureSamples
int maxForestSize
boolean useOutOfBagError
boolean useOutOfBagImportance
TreeFeatureImportanceInference importanceMeasure
OnLineStatistics[] feature_importance
double outOfBagError
RandomDecisionTree baseLearner
List<E> forest
int sampleSize
int sampleCount
boolean autoSampleSize
VectorCollectionFactory<V extends Vec> vecFactory
DistanceMetric dm
double stndDevs
SeedSelectionMethods.SeedSelection seedSelection
List<E> gaussians
double[] a_k
double tolerance
int MaxIterLimit
DistanceMetric dm
int k
int maxIterations
VectorCollectionFactory<V extends Vec> vectorCollectionFactory
double stndDevs
double eps
KClusterer base
int B
DistanceMetric dm
boolean PCSampling
double[] ElogW
double[] logW
double[] gap
double[] s_k
DistanceMetric dm
int m_pts
int m_clSize
VectorCollectionFactory<V extends Vec> vcf
DistanceMetric dm
VectorCollectionFactory<V extends Vec> vectorCollectionFactory
double alpha
int k
MultivariateKDE mkde
int maxIterations
double scaleBandwidthFactor
DistanceMetric dm
VectorCollectionFactory<V extends Vec> vcf
VectorCollection<V extends Vec> vc
double radius
int minPts
double[] core_distance
double[] reach_d
boolean[] processed
Vec[] allVecs
double xi
double one_min_xi
OPTICS.ExtractionMethod extractionMethod
PriorityQueue<E> orderdSeeds
DistanceMetric dm
Random rand
SeedSelectionMethods.SeedSelection seedSelection
int repeats
int iterLimit
int[] medoids
boolean storeMedoids
KClusterer baseClusterer
ClusterEvaluation clusterEvaluation
int[] splitList
int[] fullDesignations
DataSet<Type extends DataSet> originalDataSet
KClusterer baseClusterer
ClusterEvaluation clusterEvaluation
LanceWilliamsDissimilarity distMeasure
DistanceMetric dm
int[] merges
UpdatableClusterDissimilarity distMeasure
int[] merges
DataSet<Type extends DataSet> curDataSet
double stndDevs
ClusterDissimilarity dissMeasure
double[][] centroidSelfDistances
double[][] centroidPairDots
DenseSparseMetric dmds
boolean useDenseSparse
boolean trustH0
boolean iterativeRefine
int minClusterSize
KMeans kmeans
KernelTrick kernel
List<E> X
Vec W
List<E> accel
double[] selfK
KernelKMeans.X
double[] meanSqrdNorms
double[] normConsts
double[] ownes
int[] newDesignations
int maximumIterations
DistanceMetric dm
SeedSelectionMethods.SeedSelection seedSelection
Random rand
boolean storeMeans
boolean saveCentroidDistance
double[] nearestCentroidDist
List<E> means
int MaxIterLimit
KMeans kmeans
double[] fKs
int batchSize
int iterations
DistanceMetric dm
SeedSelectionMethods.SeedSelection seedSelection
boolean storeMeans
List<E> means
boolean stopAfterFail
boolean iterativeRefine
int minClusterSize
KMeans kmeans
double[] finalLambdas
double[] mins
IndexFunction transform
List<E> lambdas
boolean ignorZeros
DataTransformProcess baseDtp
Classifier baseClassifier
Regressor baseRegressor
DataTransformProcess learnedDtp
Classifier learnedClassifier
Regressor learnedRegressor
double factor
int C
FastICA.NegEntropyFunc G
boolean preWhitened
true
to assume the data has already beenZeroMeanTransform zeroMean
Matrix unmixing
Matrix mixing
Imputer.NumericImputionMode mode
int[] cat_imputs
double[] numeric_imputs
double prob
Random rand
InvertibleTransform transform
JLTransform.TransformMode mode
Matrix R
int k
boolean inMemory
int origNumericalCount
CategoricalData[] categoricalData
int addedNumers
int n
double[][] conversionArray
CategoricalData[] newDataArray
Matrix P
int maxPCs
double threshold
double p
int degree
Vec stndDevs
double regularization
int dimensions
Matrix transform
ThreadLocal<T> tempVecs
Vec shiftVector
int featureCount
MutualInfoFS.NumericalHandeling numericHandling
double[] w
int featureCount
int iterations
int neighbors
DistanceMetric dm
VectorCollectionFactory<V extends Vec> vcf
double maxDecrease
int folds
int minFeatures
int maxFeatures
Object evaluator
RemoveAttributeTransform finalTransform
Set<E> catSelected
Set<E> numSelected
double maxIncrease
Classifier classifier
Regressor regressor
int minFeatures
int maxFeatures
int folds
Object evaluator
int dimensions
KernelTrick k
int basisSize
Nystrom.SamplingMethod samplingMethod
double[] eigenVals
Matrix eigenVecs
Vec[] vecs
double[] rowAvg
double allAvg
double ridge
KernelTrick k
int dimension
Nystrom.SamplingMethod method
int basisSize
boolean sampleWithReplacment
List<E> basisVecs
List<E> accelCache
Matrix transform
DistanceMetric dm
VectorCollectionFactory<V extends Vec> vcf
int searchNeighbors
MDS mds
boolean c_isomap
DistanceMetric dm_source
DistanceMetric dm_embed
double perplexity
int dt
int M
double gamma
DistanceMetric dm
double tolerance
int maxIterations
int targetSize
double alpha
double exageratedPortion
DistanceMetric dm
int T
double perplexity
double theta
int s
double alpha
double beta
double location
double scale
double df
double lambda
double v1
double v2
double k
double theta
Function fCDF
double mu
double b
double location
double scale
double logScale
double mu
double s
double mu
double sig
double min
double max
double logMin
double logMax
double logDiff
double diff
double sigma
double mean
double stndDev
double xm
double alpha
double sig
double df
double mu
double sig
ContinuousDistribution base
double min
double max
double probInOrigRange
double old_min_p
double old_max_p
double a
double b
double alpha
double beta
double logAlpha
double logBeta
int trials
double p
double lambda
int min
int max
double[] X
double[] weights
double sumOFWeights
double h
double Xmean
double Xvar
double Xskew
KernelFunction k
Function cdfFunc
DistanceMetric d
double sigma
double sigmaSqrd2Inv
double c
Parameter param
KernelTrick k
double degree
double alpha
double c
double sigma
double omega
double cnst
double c
double sigma
double sigmaSqrd2Inv
double alpha
double c
Vec alphas
KernelFunction kf
double bandwidth
DistanceMetric distanceMetric
VectorCollectionFactory<V extends Vec> vcf
VectorCollection<V extends Vec> vecCollection
int defaultK
double defaultStndDev
List<E> parameters
Map<K,V> paramMap
double logPDFConst
-k -- -1 2 -- / __\ 2 \2 ||/ (|Sigma|)where k is the dimension, Sigma is the covariance matrix, and || denotes the determinant.
/ __\ (-k) log\2 ||/ - log(|Sigma|) ----------------------------- 2This can then be added to the log of the x dependent part, which, when exponentiated, gives the correct result of dividing by this term.
Matrix invCovariance
NormalM.logPDFConst
, we only need the inverse of the covariance matrix.Vec mean
Matrix L
KernelFunction k
double[][] sortedDimVals
double[] bandwidth
int[][] sortedIndexVals
List<E> originalVecs
double alpha
int dim
double delta
OnLineStatistics allStats
LinkedList<E> windows
int M
double leftMean
double leftVariance
double rightMean
double rightVariance
int time
BaseDriftDetector.driftStart
int maxHistory
boolean warning
true
to indicate that a warning mode in in effect.boolean drifting
true
to indicate that concept drift has occurredint driftStart
Deque<E> history
int fails
int minSamples
double p_min
double s_min
double warningThreshold
double driftThreshold
Exception faultException
Matrix L
LUPDecomposition.forwardSub(jsat.linear.Matrix, jsat.linear.Vec)
and backSub can be done without copying.Vec[] vecs
int[] lengthSums
int totalLength
double constant
int length
double[][] matrix
int n
double[] d
double[] e
Matrix V
Matrix H
boolean complexResult
Vec base
int[] reverseIndex
Poly2Vec.getReverseIndex()
to access this valueint rows
int cols
long seedMult
ThreadLocal<T> localRand
int length
long seedMult
ThreadLocal<T> localRand
double scale
Vec base
Vec base
double shift
SparseVector[] rows
int length
int used
int[] indexes
double[] values
Double sumCache
Double varianceCache
Double minCache
Double maxCache
Matrix baseMatrix
int firstRow
int firstColumn
int toRow
int toCol
int startPosition
int length
Vec vec
Matrix base
Vec base
double normSqrd
DistanceMetric base
AtomicLong counter
KernelTrick kf
boolean reTrain
Matrix S
double p
Vec invStndDevs
boolean bothNonZero
boolean absoluteDistance
Vec w
DistanceMetric dm
List<E> vecs
List<E> accell_cache
jsat.linear.vectorcollection.CoverTree.TreeNode root
boolean maxDistDirty
boolean looseBounds
DistanceMetric distanceMetric
jsat.linear.vectorcollection.KDTree.KDNode root
KDTree.PivotSelection pvSelection
int size
int leaf_node_size
List<E> allVecs
List<E> distCache
double[] hr_hi
double[] hr_low
KDTree.PivotSelection pivotSelectionMethod
DistanceMetric dm
List<E> ownedVecs
List<E> ownedRDists
List<E> R
int size
List<E> allVecs
List<E> distCache
double[] repRadius
int size
jsat.linear.vectorcollection.RTree.RNode<V extends Vec> root
int M
int m
int dim
DenseVector dcScratch
DistanceMetric dm
DistanceMetric distanceMetric
List<E> distCache
DistanceMetric dm
List<E> distCache
List<E> allVecs
Random rand
int sampleSize
int searchIterations
jsat.linear.vectorcollection.VPTree.TreeNode root
VPTree.VPSelection vpSelection
int size
int maxLeafSize
VPTree.VPSelection vpSelectionMethod
VPTree.VPSelection vpSelectionMethod
Matrix randProjMatrix
int[] projections
int slotsPerEntry
List<E> vecs
ThreadLocal<T> tempVecs
int intsToUse
boolean inMemory
int poolSize
double eps
double c
double real
double imag
double mean
double variance
double smoothing
double min
double maxTime
double tau
double alpha
double min
double maxTime
double tau
double alpha
DenseMatrix hessian
DenseMatrix coefficentMatrix
DenseVector derivatives
DenseVector errors
DenseVector gradiant
double reflection
double expansion
double contraction
double shrink
Vec daigG
double biasG
double[] G
double[] S
double N
double biasG
long t
double rho
Vec daigG
double biasG
double eta_pos
double eta_neg
double eta_start
double eta_max
double eta_min
double[] prev_w
double[] prev_grad
double[] cur_eta
double prev_grad_bias
double cur_eta_bias
double prev_bias
double momentum
boolean nestrov
Vec velocity
double biasVelocity
Classifier baseClassifier
Classifier trainedClassifier
ClassificationScore classificationTargetScore
RegressionScore regressionTargetScore
Regressor baseRegressor
Regressor trainedRegressor
List<E> searchParams
int folds
boolean trainModelsInParallel
boolean trainFinalModel
boolean reuseSameCVFolds
Regressor[] voters
int epochs
double lambda
KernelTrick k
List<E> vecs
double[] alphas
Vec coefficents
double shift
double scale
Function logitFun
Function logitFunD
Vec B
double a
boolean useWeights
MultivariateKDE kde
OrdinaryKriging.Variogram vari
Vec X
RegressionDataSet dataSet
double errorSqrd
double nugget
List<E> params
Map<K,V> paramMap
int initialTrainSize
int iterations
double maxPointError
int minResultSize
Regressor baseRegressor
boolean[] consensusSet
double modelError
double lambda
Vec w
double bias
RidgeRegression.SolverMode mode
double trainingProportion
Regressor weakLearner
Regressor strongLearner
List<E> F
List<E> coef
double learningRate
int maxIterations
OnLineStatistics absError
OnLineStatistics meanError
boolean rmse
DoubleList truths
DoubleList predictions
DoubleList weights
Tokenizer tokenizer
Map<K,V> wordIndex
WordWeighting weighting
List<E> classLabels
HashedTextDataLoader.finishAdding()
was called.CategoricalData labelInfo
List<E> classLabels
TextDataLoader.finishAdding()
was called.CategoricalData labelInfo
int dimensionSize
Tokenizer tokenizer
WordWeighting weighting
List<E> vectors
AtomicIntegerArray termDocumentFrequencys
boolean noMoreAdding
int documents
ThreadLocal<T> workSpace
ThreadLocal<T> storageSpace
ThreadLocal<T> wordCounts
TextVectorCreator tvc
int dimensionSize
Tokenizer tokenizer
WordWeighting weighting
List<E> vectors
Tokenizer tokenizer
ConcurrentHashMap<K,V> wordIndex
List<E> allWords
ConcurrentHashMap<K,V> termDocumentFrequencys
WordWeighting weighting
ThreadLocal<T> workSpace
ThreadLocal<T> storageSpace
ThreadLocal<T> wordCounts
TextVectorCreator tvc
boolean noMoreAdding
TextDataLoader.finishAdding()
is called, and no new original
documents can be insertedAtomicInteger currentLength
int documents
boolean useLowerCase
boolean otherToWhiteSpace
boolean noDigits
int minTokenLength
int maxTokenLength
int n
Tokenizer base
boolean allSubN
double k1
double b
double N
double docAvg
int[] df
double totalDocuments
List<E> df
double docMax
TfIdf.TermFrequencyWeight tfWeighting
int maxSize
int maxSize
double[] array
int end
IntList index
int prevSize
int[] array
int end
int[] heap
int size
Comparator<T> comparator
HashMap<K,V> valueIndexMap
int[] valueIndexStore
IntPriorityQueue.Mode fastValueRemove
float loadFactor
int used
byte[] status
int[] keys
int nnz
int first
boolean[] has
int[] prev
int[] next
int[] store
int size
long[] array
int end
double probability
Object match
Object[] source
int size
AtomicLongArray larray
int c
int i
int[] Q
long x
long y
long z
long w
long x
long y
long z
long x
long y
long z
long w
long v
long d
Copyright © 2017. All rights reserved.