public class MultivariateNormals extends BestClassDistribution
NaiveBayes
. Instead of treating the variables as independent,
each class uses all of its variables to fit a Multivariate Normal
distribution. As such, it can only
handle numerical attributes. However, if the classes are normally distributed, it will produce optimal classification
results. The less normal the true distributions are, the less accurate the classifier will be.USE_PRIORS
Constructor and Description |
---|
MultivariateNormals()
Creates a new class for classification by feating each class to a
Multivariate Normal Distribution . |
MultivariateNormals(boolean usePriors) |
MultivariateNormals(MultivariateNormals toCopy)
Copy constructor
|
Modifier and Type | Method and Description |
---|---|
MultivariateNormals |
clone() |
boolean |
supportsWeightedData()
Indicates whether the model knows how to train using weighted data points.
|
classify, getParameter, getParameters, isUsePriors, setUsePriors, trainC, trainC
public MultivariateNormals(boolean usePriors)
public MultivariateNormals()
Multivariate Normal Distribution
.public MultivariateNormals(MultivariateNormals toCopy)
toCopy
- the object to copypublic boolean supportsWeightedData()
Classifier
supportsWeightedData
in interface Classifier
supportsWeightedData
in class BestClassDistribution
public MultivariateNormals clone()
clone
in interface Classifier
clone
in class BestClassDistribution
Copyright © 2017. All rights reserved.