public class SquaredLoss extends Object implements LossR
Constructor and Description |
---|
SquaredLoss() |
Modifier and Type | Method and Description |
---|---|
SquaredLoss |
clone() |
static double |
deriv(double pred,
double y)
Computes the first derivative of the squared loss
|
static double |
deriv2(double pred,
double y)
Computes the second derivative of the squared loss, which is always
1 |
double |
getDeriv(double pred,
double y)
Computes the first derivative of the getLoss function.
|
double |
getDeriv2(double pred,
double y)
Computes the second derivative of the getLoss function.
|
double |
getDeriv2Max()
Returns an upper bound on the maximum value of the second derivative.
|
double |
getLoss(double pred,
double y)
Computes the getLoss for a regression problem.
|
double |
getRegression(double score)
Given the score value of a data point, this returns the correct numeric
result.
|
static double |
loss(double pred,
double y)
Computes the SquaredLoss loss
|
static double |
regress(double score) |
public static double loss(double pred, double y)
pred
- the predicted valuey
- the true valuepublic static double deriv(double pred, double y)
pred
- the predicted valuey
- the true valuepublic static double deriv2(double pred, double y)
1
pred
- the predicted valuey
- the true valuepublic static double regress(double score)
public double getLoss(double pred, double y)
LossR
public double getDeriv(double pred, double y)
LossR
public double getDeriv2(double pred, double y)
LossR
public double getDeriv2Max()
LossFunc
Double.NaN
is a valid
result. It is also possible for 0
and
Double.POSITIVE_INFINITY
to be valid results, and must be checked
for.getDeriv2Max
in interface LossFunc
LossFunc.getDeriv2(double, double)
public SquaredLoss clone()
public double getRegression(double score)
LossR
getRegression
in interface LossR
score
- the score for a data pointCopyright © 2017. All rights reserved.