public class DataModelPipeline extends Object implements Classifier, Regressor, Parameterized
Constructor and Description |
---|
DataModelPipeline(Classifier baseClassifier,
DataTransform... transforms)
Creates a new Data Model Pipeline from the given transform factories and
base classifier
|
DataModelPipeline(Classifier baseClassifier,
DataTransformProcess dtp)
Creates a new Data Model Pipeline from the given transform process and
base classifier
|
DataModelPipeline(DataModelPipeline toCopy)
Copy constructor
|
DataModelPipeline(Regressor baseRegressor,
DataTransform... transforms)
Creates a new Data Model Pipeline from the given transform factories and
base classifier
|
DataModelPipeline(Regressor baseRegressor,
DataTransformProcess dtp)
Creates a new Data Model Pipeline from the given transform process and
base regressor
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
classify(DataPoint data)
Performs classification on the given data point.
|
DataModelPipeline |
clone() |
Parameter |
getParameter(String paramName)
Returns the parameter with the given name.
|
List<Parameter> |
getParameters()
Returns the list of parameters that can be altered for this learner.
|
double |
regress(DataPoint data) |
boolean |
supportsWeightedData()
Indicates whether the model knows how to train using weighted data points.
|
void |
train(RegressionDataSet dataSet) |
void |
train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
trainC(ClassificationDataSet dataSet)
Trains the classifier and constructs a model for classification using the
given data set.
|
void |
trainC(ClassificationDataSet dataSet,
ExecutorService threadPool)
Trains the classifier and constructs a model for classification using the
given data set.
|
public DataModelPipeline(Classifier baseClassifier, DataTransformProcess dtp)
dtp
- the data transforms to applybaseClassifier
- the classifier to learn withpublic DataModelPipeline(Classifier baseClassifier, DataTransform... transforms)
transforms
- the data transforms to applybaseClassifier
- the classifier to learn withpublic DataModelPipeline(Regressor baseRegressor, DataTransformProcess dtp)
dtp
- the data transforms to applybaseRegressor
- the regressor to learn withpublic DataModelPipeline(Regressor baseRegressor, DataTransform... transforms)
transforms
- the data transforms to applybaseRegressor
- the regressor to learn withpublic DataModelPipeline(DataModelPipeline toCopy)
toCopy
- the object to copypublic CategoricalResults classify(DataPoint data)
Classifier
classify
in interface Classifier
data
- the data point to classifypublic void trainC(ClassificationDataSet dataSet, ExecutorService threadPool)
Classifier
trainC
in interface Classifier
dataSet
- the data set to train onthreadPool
- the source of threads to use.public void trainC(ClassificationDataSet dataSet)
Classifier
trainC
in interface Classifier
dataSet
- the data set to train onpublic boolean supportsWeightedData()
Classifier
supportsWeightedData
in interface Classifier
supportsWeightedData
in interface Regressor
public void train(RegressionDataSet dataSet, ExecutorService threadPool)
public void train(RegressionDataSet dataSet)
public DataModelPipeline clone()
public List<Parameter> getParameters()
Parameterized
getParameters
in interface Parameterized
public Parameter getParameter(String paramName)
Parameterized
getParameter
in interface Parameterized
paramName
- the name of the parameter to obtainCopyright © 2017. All rights reserved.