Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Z 

A

absDet() - Method in class jsat.linear.QRDecomposition
 
absDet() - Method in class jsat.linear.SingularValueDecomposition
Computes the absolute value of the determinant for the full matrix.
absFunc - Static variable in class jsat.math.MathTricks
Convenience object for taking the abs of the first index
AbsoluteLoss - Class in jsat.lossfunctions
The AbsoluteLoss loss function for regression L(x, y) = |x-y|.
AbsoluteLoss() - Constructor for class jsat.lossfunctions.AbsoluteLoss
 
AbstractClusterDissimilarity - Class in jsat.clustering.dissimilarity
This base class does not currently provide any inheritable functionality, but stores static methods.
AbstractClusterDissimilarity() - Constructor for class jsat.clustering.dissimilarity.AbstractClusterDissimilarity
 
accel - Variable in class jsat.clustering.kmeans.KernelKMeans
THe acceleration cache for the kernel
accelCache - Variable in class jsat.classifiers.linear.kernelized.DUOL
 
accelCache - Variable in class jsat.classifiers.svm.SupportVectorLearner
Kernel evaluation acceleration cache
accessingRow(int) - Method in class jsat.classifiers.svm.SupportVectorLearner
This method allows the caller to hint that they are about to access many kernel values for a specific row.
accumulateSum(Vec, Vec, Vec, Function) - Static method in class jsat.linear.VecOps
Computes the result of ∀ i ∈ |w| wi f(xi-yi)
Accuracy - Class in jsat.classifiers.evaluation
Evaluates a classifier based on its accuracy in predicting the correct class.
Accuracy() - Constructor for class jsat.classifiers.evaluation.Accuracy
 
Accuracy(Accuracy) - Constructor for class jsat.classifiers.evaluation.Accuracy
 
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
This method computes the value of the α variable.
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.MedianDissimilarity
 
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
aConst(boolean, int, int, int) - Method in class jsat.clustering.dissimilarity.WardsDissimilarity
 
acosh(double) - Static method in class jsat.math.TrigMath
 
acotch(double) - Static method in class jsat.math.TrigMath
 
acsch(double) - Static method in class jsat.math.TrigMath
 
activate(Vec, Vec) - Method in interface jsat.classifiers.neuralnetwork.activations.ActivationLayer
Computes the activation function of this layer on the given input.
activate(Matrix, Matrix, boolean) - Method in interface jsat.classifiers.neuralnetwork.activations.ActivationLayer
Computes the activation function of this layer on the given input.
activate(Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.LinearLayer
 
activate(Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.LinearLayer
 
activate(Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.ReLU
 
activate(Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.ReLU
 
activate(Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.SigmoidLayer
 
activate(Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.SigmoidLayer
 
activate(Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.SoftmaxLayer
 
activate(Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.SoftmaxLayer
 
activate(Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.SoftSignLayer
 
activate(Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.SoftSignLayer
 
activate(Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.TanhLayer
 
activate(Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.TanhLayer
 
ActivationFunction() - Constructor for class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
 
ActivationLayer - Interface in jsat.classifiers.neuralnetwork.activations
This interface defines a type of activation layer for use in a Neural Network
AdaBoostM1 - Class in jsat.classifiers.boosting
Implementation of Experiments with a New Boosting Algorithm, by Yoav Freund&Robert E.
AdaBoostM1(Classifier, int) - Constructor for class jsat.classifiers.boosting.AdaBoostM1
 
AdaBoostM1PL - Class in jsat.classifiers.boosting
An extension to the original AdaBoostM1 algorithm for parallel training.
AdaBoostM1PL(Classifier, int) - Constructor for class jsat.classifiers.boosting.AdaBoostM1PL
 
AdaDelta - Class in jsat.math.optimization.stochastic
AdaDelta is inspired by AdaGrad and was developed for use primarily in neural networks.
AdaDelta() - Constructor for class jsat.math.optimization.stochastic.AdaDelta
Creates a new AdaDelta updater using a decay rate of 0.95
AdaDelta(double) - Constructor for class jsat.math.optimization.stochastic.AdaDelta
Creates a new AdaDelta updater
AdaDelta(AdaDelta) - Constructor for class jsat.math.optimization.stochastic.AdaDelta
Copy constructor
AdaGrad - Class in jsat.math.optimization.stochastic
AdaGrad provides an adaptive learning rate for each individual feature

See: Duchi, J., Hazan, E.,&Singer, Y.
AdaGrad() - Constructor for class jsat.math.optimization.stochastic.AdaGrad
Creates a new AdaGrad updater
AdaGrad(AdaGrad) - Constructor for class jsat.math.optimization.stochastic.AdaGrad
Copy constructor
Adam - Class in jsat.math.optimization.stochastic
Adam is inspired by RMSProp and AdaGrad, where the former can be seen as a special case of Adam.
Adam() - Constructor for class jsat.math.optimization.stochastic.Adam
 
Adam(double, double, double, double, double) - Constructor for class jsat.math.optimization.stochastic.Adam
 
Adam(Adam) - Constructor for class jsat.math.optimization.stochastic.Adam
Copy constructor
add(Matrix) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A+B
add(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A+B
add(double) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A+c
add(double, ExecutorService) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A+c
add(double) - Method in class jsat.linear.Vec
Returns a new vector that is the result of this + c
add(Vec) - Method in class jsat.linear.Vec
Returns a new vector that is the result of this + b
add(double) - Method in class jsat.linear.VecPaired
 
add(Vec) - Method in class jsat.linear.VecPaired
 
add(V) - Method in class jsat.linear.vectorcollection.RTree
 
add(V) - Method in class jsat.linear.vectorcollection.VectorArray
 
add(Complex) - Method in class jsat.math.Complex
Creates a new complex number containing the resulting addition of this and another
add(double) - Method in class jsat.math.ExponentialMovingStatistics
Adds the given data point to the statistics
add(double) - Method in class jsat.math.OnLineStatistics
Adds a data sample with unit weight to the counts.
add(double, double) - Method in class jsat.math.OnLineStatistics
Adds a data sample the the counts with the provided weight of influence.
add(OnLineStatistics, OnLineStatistics) - Static method in class jsat.math.OnLineStatistics
Computes a new set of counts that is the sum of the counts from the given distributions.
add(OnLineStatistics) - Method in class jsat.math.OnLineStatistics
Adds to the current statistics all the samples that were collected in B.
add(DataPoint) - Method in class jsat.SimpleDataSet
Adds a new datapoint to this set.
add(E) - Method in class jsat.utils.BoundedSortedList
 
add(int, E) - Method in class jsat.utils.BoundedSortedList
 
add(V) - Method in class jsat.utils.BoundedSortedSet
 
add(double) - Method in class jsat.utils.DoubleList
Performs exactly the same as DoubleList.add(java.lang.Double).
add(Double) - Method in class jsat.utils.DoubleList
 
add(int, double) - Method in class jsat.utils.DoubleList
add(int, Double) - Method in class jsat.utils.DoubleList
 
add(int, int) - Method in class jsat.utils.IntList
add(int, Integer) - Method in class jsat.utils.IntList
 
add(int) - Method in class jsat.utils.IntList
Operates exactly as IntList.add(java.lang.Integer)
add(Integer) - Method in class jsat.utils.IntList
 
add(Integer) - Method in class jsat.utils.IntSet
 
add(int) - Method in class jsat.utils.IntSet
 
add(Integer) - Method in class jsat.utils.IntSetFixedSize
 
add(int) - Method in class jsat.utils.IntSetFixedSize
Adds a new integer into the set
add(Integer) - Method in class jsat.utils.IntSortedSet
 
add(int, long) - Method in class jsat.utils.LongList
add(int, Long) - Method in class jsat.utils.LongList
 
add(long) - Method in class jsat.utils.LongList
Operates exactly as LongList.add(java.lang.Long)
add(Long) - Method in class jsat.utils.LongList
 
add(int, E) - Method in class jsat.utils.SimpleList
 
add(T) - Method in class jsat.utils.SortedArrayList
 
add(int, T) - Method in class jsat.utils.SortedArrayList
 
addAll(Collection<? extends V>) - Method in class jsat.linear.vectorcollection.VectorArray
 
addAll(Collection<? extends V>) - Method in class jsat.utils.BoundedSortedSet
 
addAll(Collection<? extends Integer>) - Method in class jsat.utils.IntList
 
addAll(Collection<? extends T>) - Method in class jsat.utils.SortedArrayList
 
addAll(int, Collection<? extends T>) - Method in class jsat.utils.SortedArrayList
 
addAndGet(double) - Method in class jsat.utils.concurrent.AtomicDouble
Atomically adds the given value to the current value.
addAndGet(int, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically adds the given value to the element at index i.
addChild(FibHeap.FibNode<T>) - Method in class jsat.utils.FibHeap.FibNode
Adds the given node directly to the children list of this node.
addCol(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+ c
addCol(Matrix, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+ c
addDataPoint(Vec, int[], int) - Method in class jsat.classifiers.ClassificationDataSet
Creates a new data point and adds it to this data set.
addDataPoint(Vec, int) - Method in class jsat.classifiers.ClassificationDataSet
Creates a new data point with no categorical variables and adds it to this data set.
addDataPoint(Vec, int, double) - Method in class jsat.classifiers.ClassificationDataSet
Creates a new data point with no categorical variables and adds it to this data set.
addDataPoint(Vec, int[], int, double) - Method in class jsat.classifiers.ClassificationDataSet
Creates a new data point and add its to this data set.
addDataPoint(DataPoint, int) - Method in class jsat.classifiers.ClassificationDataSet
Creates a new data point and add it
addDataPoint(Vec, double) - Method in class jsat.regression.RegressionDataSet
Creates a new data point with no categorical variables to be added to the data set.
addDataPoint(Vec, int[], double) - Method in class jsat.regression.RegressionDataSet
Creates a new data point to be added to the data set.
addDataPoint(DataPoint, double) - Method in class jsat.regression.RegressionDataSet
 
addDataPointPair(DataPointPair<Double>) - Method in class jsat.regression.RegressionDataSet
 
addDiag(Matrix, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values along the main diagonal of the matrix by adding a constant to them
addEdge(N, N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Adds a directed edge into the network from a to b.
addFeature(int, int, Set<Integer>, Set<Integer>) - Static method in class jsat.datatransform.featureselection.SFS
 
addMultCol(Matrix, int, int, int, double, double[]) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+c[:]*t.
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range.
addMultCol(Matrix, int, int, int, double, Vec) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+c[:]*t.
The Matrix A and vector c do not need to have the same dimensions, so long as they both have indices in the given range.
addMultRow(Matrix, int, int, int, double, double[]) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+c[:]*t.
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range.
addMultRow(Matrix, int, int, int, double, Vec) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+c[:]*t.
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range.
addNewKernelPoint() - Method in class jsat.distributions.kernels.KernelPoints
Adds a new Kernel Point to the internal list this object represents.
addNode(N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Adds a new node to the graph
addNodes(Collection<? extends N>) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Adds all the objects in c as nodes in the graph
addOriginalDocument(String) - Method in class jsat.text.ClassificationHashedTextDataLoader
addOriginalDocument(String, int) - Method in class jsat.text.ClassificationHashedTextDataLoader
To be called by the HashedTextDataLoader.initialLoad() method.
addOriginalDocument(String) - Method in class jsat.text.ClassificationTextDataLoader
addOriginalDocument(String, int) - Method in class jsat.text.ClassificationTextDataLoader
To be called by the TextDataLoader.initialLoad() method.
addOriginalDocument(String) - Method in class jsat.text.HashedTextDataLoader
To be called by the HashedTextDataLoader.initialLoad() method.
addOriginalDocument(String) - Method in class jsat.text.TextDataLoader
To be called by the TextDataLoader.initialLoad() method.
addParameter(DoubleParameter, double...) - Method in class jsat.parameters.GridSearch
Adds a new double parameter to be altered for the model being tuned.
addParameter(String, double...) - Method in class jsat.parameters.GridSearch
Adds a new double parameter to be altered for the model being tuned.
addParameter(IntParameter, int...) - Method in class jsat.parameters.GridSearch
Adds a new int parameter to be altered for the model being tuned.
addParameter(String, int...) - Method in class jsat.parameters.GridSearch
Adds a new integer parameter to be altered for the model being tuned.
addParameter(DoubleParameter, Distribution) - Method in class jsat.parameters.RandomSearch
Adds a new double parameter to be altered for the model being tuned.
addParameter(IntParameter, Distribution) - Method in class jsat.parameters.RandomSearch
Adds a new double parameter to be altered for the model being tuned.
addParameter(String, Distribution) - Method in class jsat.parameters.RandomSearch
Adds a new parameter to be altered for the model being tuned.
addPoint(DataPoint, int) - Method in class jsat.classifiers.trees.ImpurityScore
Adds one more point to the impurity score
addPoint(double, int) - Method in class jsat.classifiers.trees.ImpurityScore
Adds one more point to the impurity score
addRange(Collection<Integer>, int, int, int) - Static method in class jsat.utils.ListUtils
Adds values into the given collection using integer in the specified range and step size.
addResult(CategoricalResults, int, double) - Method in class jsat.classifiers.evaluation.Accuracy
 
addResult(CategoricalResults, int, double) - Method in class jsat.classifiers.evaluation.AUC
 
addResult(CategoricalResults, int, double) - Method in interface jsat.classifiers.evaluation.ClassificationScore
Adds the given result to the score
addResult(CategoricalResults, int, double) - Method in class jsat.classifiers.evaluation.Kappa
 
addResult(CategoricalResults, int, double) - Method in class jsat.classifiers.evaluation.LogLoss
 
addResult(CategoricalResults, int, double) - Method in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
addResult(double, double, double) - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
addResult(double, double, double) - Method in class jsat.regression.evaluation.MeanSquaredError
 
addResult(double, double, double) - Method in interface jsat.regression.evaluation.RegressionScore
Adds the given result to the score
addResult(double, double, double) - Method in class jsat.regression.evaluation.TotalHistoryRegressionScore
 
addResults(ClassificationScore) - Method in class jsat.classifiers.evaluation.Accuracy
 
addResults(ClassificationScore) - Method in class jsat.classifiers.evaluation.AUC
 
addResults(ClassificationScore) - Method in interface jsat.classifiers.evaluation.ClassificationScore
The score contained in this object is augmented with the results already accumulated in the other object.
addResults(ClassificationScore) - Method in class jsat.classifiers.evaluation.Kappa
 
addResults(ClassificationScore) - Method in class jsat.classifiers.evaluation.LogLoss
 
addResults(ClassificationScore) - Method in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
addResults(RegressionScore) - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
addResults(RegressionScore) - Method in class jsat.regression.evaluation.MeanSquaredError
 
addResults(RegressionScore) - Method in interface jsat.regression.evaluation.RegressionScore
The score contained in this object is augmented with the results already accumulated in the other object.
addResults(RegressionScore) - Method in class jsat.regression.evaluation.TotalHistoryRegressionScore
 
addRow(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+ c
addRow(Matrix, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+ c
addSample(double, V) - Method in class jsat.driftdetectors.ADWIN
 
addSample(double, V) - Method in class jsat.driftdetectors.BaseDriftDetector
Adds a new point to the drift detector.
addSample(boolean, V) - Method in class jsat.driftdetectors.DDM
Adds a new boolean trial to the detector, with the goal of detecting when the number of successful trials (true) drifts to a new value.
addSample(double, V) - Method in class jsat.driftdetectors.DDM
 
addScorer(ClassificationScore) - Method in class jsat.classifiers.ClassificationModelEvaluation
addScorer(RegressionScore) - Method in class jsat.regression.RegressionModelEvaluation
addToCache(Vec, List<Double>) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
addToCache(Vec, List<Double>) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
addToCache(Vec, List<Double>) - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
addToCache(Vec, List<Double>) - Method in interface jsat.distributions.kernels.KernelTrick
Appends the new cache values for the given vector to the list of cache values.
addToCache(Vec, List<Double>) - Method in class jsat.distributions.kernels.NormalizedKernel
 
addToHistory(V) - Method in class jsat.driftdetectors.BaseDriftDetector
Adds the given item to the history, creating a new history holder if needed.
addTransform(DataTransform) - Method in class jsat.datatransform.DataTransformProcess
Adds a transform to the list of transforms.
AdjustedRandIndex - Class in jsat.clustering.evaluation
Adjusted Rand Index (ARI) is a measure to evaluate a cluster based on the true class labels for the data set.
AdjustedRandIndex() - Constructor for class jsat.clustering.evaluation.AdjustedRandIndex
 
ADWIN<V> - Class in jsat.driftdetectors
Adaptive Windowing (ADWIN) is an algorithm for detecting changes in an input stream.
ADWIN(double) - Constructor for class jsat.driftdetectors.ADWIN
Creates a new ADWIN object for detecting changes in the mean value of a stream of inputs.
ADWIN(double, int) - Constructor for class jsat.driftdetectors.ADWIN
Creates a new ADWIN object for detecting changes in the mean value of a stream of inputs.
ADWIN(ADWIN<V>) - Constructor for class jsat.driftdetectors.ADWIN
Copy constructor
allEpsNeighbors(VectorCollection<V0>, List<V1>, double, ExecutorService) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Searches the given collection for all the neighbors within a distance of radius for every data point in the given search list.
allNearestNeighbors(VectorCollection<V0>, List<V1>, int) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Searches the given collection for the k nearest neighbors for every data point in the given search list.
allNearestNeighbors(VectorCollection<V0>, V1[], int) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Searches the given collection for the k nearest neighbors for every data point in the given search list.
allNearestNeighbors(VectorCollection<V0>, List<V1>, int, ExecutorService) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Searches the given collection for the k nearest neighbors for every data point in the given search list.
allNearestNeighbors(VectorCollection<V0>, V1[], int, ExecutorService) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Searches the given collection for the k nearest neighbors for every data point in the given search list.
allWords - Variable in class jsat.text.TextDataLoader
list of all word tokens encountered in order of first observation
ALMA2 - Class in jsat.classifiers.linear
Provides a linear implementation of the ALMAp algorithm for p = 2, which is considerably more efficient to compute.
ALMA2() - Constructor for class jsat.classifiers.linear.ALMA2
Creates a new ALMA learner using an alpha of 0.8
ALMA2(double) - Constructor for class jsat.classifiers.linear.ALMA2
Creates a new ALMA learner using the given alpha
ALMA2(ALMA2) - Constructor for class jsat.classifiers.linear.ALMA2
Copy constructor
ALMA2K - Class in jsat.classifiers.linear.kernelized
Provides a kernelized version of the ALMA2 algorithm.
ALMA2K(KernelTrick, double) - Constructor for class jsat.classifiers.linear.kernelized.ALMA2K
Creates a new kernelized ALMA2 object
ALMA2K(ALMA2K) - Constructor for class jsat.classifiers.linear.kernelized.ALMA2K
Copy constructor
alpha - Variable in class jsat.distributions.kernels.KernelPoint
 
alpha - Static variable in class jsat.text.GreekLetters
 
alphas - Variable in class jsat.classifiers.linear.kernelized.DUOL
Signed weights for each support vector.
alphas - Variable in class jsat.classifiers.svm.SupportVectorLearner
The array of coefficients associated with each support vector.
AMM - Class in jsat.classifiers.svm.extended
This is the batch variant of the Adaptive Multi-Hyperplane Machine (AMM) algorithm.
AMM() - Constructor for class jsat.classifiers.svm.extended.AMM
Creates a new batch AMM learner
AMM(double) - Constructor for class jsat.classifiers.svm.extended.AMM
Creates a new batch AMM learner
AMM(double, int) - Constructor for class jsat.classifiers.svm.extended.AMM
Creates a new batch AMM learner
AMM(AMM) - Constructor for class jsat.classifiers.svm.extended.AMM
Copy constructor
AODE - Class in jsat.classifiers.bayesian
Averaged One-Dependence Estimators (AODE) is an extension of Naive Bayes that attempts to be more accurate by reducing the independence assumption.
AODE() - Constructor for class jsat.classifiers.bayesian.AODE
Creates a new AODE classifier.
AODE(AODE) - Constructor for class jsat.classifiers.bayesian.AODE
Creates a copy of an AODE classifier
apply(double[]) - Method in class jsat.utils.IndexTable
Applies this index table to the specified target, putting target into the same ordering as this IndexTable.
apply(List) - Method in class jsat.utils.IndexTable
Applies this index table to the specified target, putting target into the same ordering as this IndexTable.
apply(List, List) - Method in class jsat.utils.IndexTable
Applies this index table to the specified target, putting target into the same ordering as this IndexTable.
applyFunction(Function) - Method in class jsat.linear.SparseVector
 
applyFunction(Function) - Method in class jsat.linear.Vec
Applies the given function to each and every value in the vector.
applyIndexFunction(IndexFunction) - Method in class jsat.linear.SparseVector
 
applyIndexFunction(IndexFunction) - Method in class jsat.linear.Vec
Applies the given function to each and every value in the vector.
applyMeanUpdates(double[], double[]) - Method in class jsat.clustering.kmeans.KernelKMeans
 
applyRegularization(Matrix, Vec) - Method in class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
 
applyRegularization(Matrix, Vec, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
 
applyRegularization(Matrix, Vec) - Method in interface jsat.classifiers.neuralnetwork.regularizers.WeightRegularizer
Applies regularization to one matrix, where the rows of the matrix correspond tot he weights associated to one neuron's input.
applyRegularization(Matrix, Vec, ExecutorService) - Method in interface jsat.classifiers.neuralnetwork.regularizers.WeightRegularizer
Applies regularization to one matrix, where the rows of the matrix correspond tot he weights associated to one neuron's input.
applyRegularizationToRow(Vec, double) - Method in class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
 
applyRegularizationToRow(Vec, double) - Method in interface jsat.classifiers.neuralnetwork.regularizers.WeightRegularizer
Applies the regularization to one row of the weight matrix, where the row corresponds to the weights into one neuron.
applyTo(List<String>) - Method in class jsat.text.stemming.Stemmer
Replaces each value in the list with the stemmed version of the word
applyTo(String[]) - Method in class jsat.text.stemming.Stemmer
Replaces each value in the array with the stemmed version of the word
applyTo(Vec) - Method in class jsat.text.wordweighting.BinaryWordPresent
 
applyTo(Vec) - Method in class jsat.text.wordweighting.OkapiBM25
 
applyTo(Vec) - Method in class jsat.text.wordweighting.TfIdf
 
applyTo(Vec) - Method in class jsat.text.wordweighting.WordCount
 
applyTo(Vec) - Method in class jsat.text.wordweighting.WordWeighting
The implementation may want to pre compute come values based on the vector it is about to be applied to.
applyTransform(DataTransform) - Method in class jsat.DataSet
Applies the given transformation to all points in this data set, replacing each data point with the new value.
applyTransform(DataTransform, ExecutorService) - Method in class jsat.DataSet
Applies the given transformation to all points in this data set in parallel, replacing each data point with the new value.
applyTransform(DataTransform, boolean) - Method in class jsat.DataSet
Applies the given transformation to all points in this data set.
applyTransform(DataTransform, boolean, ExecutorService) - Method in class jsat.DataSet
Applies the given transformation to all points in this data set in parallel.
ArcX4 - Class in jsat.classifiers.boosting
Arc-x4 is a ensemble-classifier that performs re-weighting of the data points based on the total number of errors that have occurred for the data point.
ArcX4(Classifier, int) - Constructor for class jsat.classifiers.boosting.ArcX4
Creates a new Arc-X4 classifier
ARFFLoader - Class in jsat
Class for loading ARFF files.
ARFFLoader() - Constructor for class jsat.ARFFLoader
 
AROW - Class in jsat.classifiers.linear
An implementation of Adaptive Regularization of Weight Vectors (AROW), which uses second order information to learn a large margin binary classifier.
AROW() - Constructor for class jsat.classifiers.linear.AROW
Creates a new AROW learner
AROW(double, boolean) - Constructor for class jsat.classifiers.linear.AROW
Creates a new AROW learner
AROW(AROW) - Constructor for class jsat.classifiers.linear.AROW
Copy constructor
array - Variable in class jsat.linear.DenseVector
 
arrayCopy() - Method in class jsat.linear.DenseVector
 
arrayCopy() - Method in class jsat.linear.ScaledVector
 
arrayCopy() - Method in class jsat.linear.SparseVector
 
arrayCopy() - Method in class jsat.linear.Vec
Creates a new array that contains all the values of this vector in the appropriate indices
arrayCopy() - Method in class jsat.linear.VecPaired
 
ArrayUtils - Class in jsat.utils
Extra utilities for working on array types
asClassificationDataSet(int) - Method in class jsat.SimpleDataSet
Converts this dataset into one meant for classification problems.
asech(double) - Static method in class jsat.math.TrigMath
 
asinh(double) - Static method in class jsat.math.TrigMath
 
asRegressionDataSet(int) - Method in class jsat.SimpleDataSet
Converts this dataset into one meant for regression problems.
assignClusterDesignations(int[], int, int[]) - Static method in class jsat.clustering.hierarchical.PriorityHAC
Goes through the merge array in order from last merge to first, and sets the cluster assignment for each data point based on the merge list.
atanh(double) - Static method in class jsat.math.TrigMath
 
AtomicDouble - Class in jsat.utils.concurrent
 
AtomicDouble(double) - Constructor for class jsat.utils.concurrent.AtomicDouble
 
AtomicDoubleArray - Class in jsat.utils.concurrent
Provides a double array that can have individual values updated atomically.
AtomicDoubleArray(int) - Constructor for class jsat.utils.concurrent.AtomicDoubleArray
Creates a new AtomicDoubleArray of the given length, with all values initialized to zero
AtomicDoubleArray(double[]) - Constructor for class jsat.utils.concurrent.AtomicDoubleArray
Creates a new AtomixDouble Array that is of the same length as the input array.
AUC - Class in jsat.classifiers.evaluation
Computes the Area Under the ROC Curve as an evaluation of classification scores.
AUC() - Constructor for class jsat.classifiers.evaluation.AUC
Creates a new AUC object
AUC(AUC) - Constructor for class jsat.classifiers.evaluation.AUC
Copy constructor
autoAddParameters(DataSet) - Method in class jsat.parameters.GridSearch
This method will automatically populate the search space with parameters based on which Parameter objects return non-null distributions.
autoAddParameters(DataSet, int) - Method in class jsat.parameters.GridSearch
This method will automatically populate the search space with parameters based on which Parameter objects return non-null distributions.

Note, using this method with Cross Validation has the potential for over-estimating the accuracy of results if the data set is actually used to for parameter guessing.
autoAddParameters(DataSet) - Method in class jsat.parameters.RandomSearch
This method will automatically populate the search space with parameters based on which Parameter objects return non-null distributions.

Note, using this method with Cross Validation has the potential for over-estimating the accuracy of results if the data set is actually used to for parameter guessing.

It is possible for this method to return 0, indicating that no default parameters could be found.
AutoDeskewTransform - Class in jsat.datatransform
This transform applies a shifted Box-Cox transform for several fixed values of λ, and selects the one that provides the greatest reduction in the skewness of the distribution.
AutoDeskewTransform() - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new AutoDeskew transform
AutoDeskewTransform(double...) - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new AutoDeskew transform
AutoDeskewTransform(List<Double>) - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new AutoDeskew transform
AutoDeskewTransform(boolean, List<Double>) - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new AutoDeskew transform
AutoDeskewTransform(DataSet) - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new deskewing object from the given data set
AutoDeskewTransform(DataSet, List<Double>) - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new deskewing object from the given data set
AutoDeskewTransform(DataSet, boolean, List<Double>) - Constructor for class jsat.datatransform.AutoDeskewTransform
Creates a new deskewing object from the given data set
AutoDeskewTransform(AutoDeskewTransform) - Constructor for class jsat.datatransform.AutoDeskewTransform
Copy constructor
autoFeatureSample() - Method in class jsat.classifiers.trees.RandomForest
Tells the class to automatically select the number of features to use.
autoKernel(Vec) - Static method in class jsat.distributions.empirical.KernelDensityEstimator
Automatically selects a good Kernel function for the data set that balances Execution time and accuracy
AveragedRegressor - Class in jsat.regression
Creates a regressor that averages the results of several voting regression methods.
AveragedRegressor(Regressor...) - Constructor for class jsat.regression.AveragedRegressor
Constructs a new averaged regressor using the given array of voters
AveragedRegressor(List<Regressor>) - Constructor for class jsat.regression.AveragedRegressor
Constructs a new averaged regressor using the given list of voters.
AverageLinkDissimilarity - Class in jsat.clustering.dissimilarity
Also known as Group-Average Agglomerative Clustering (GAAC) and UPGMA, this measure computer the dissimilarity by summing the distances between all possible data point pairs in the union of the clusters.
AverageLinkDissimilarity() - Constructor for class jsat.clustering.dissimilarity.AverageLinkDissimilarity
Creates a new AverageLinkDissimilarity using the EuclideanDistance
AverageLinkDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.AverageLinkDissimilarity
Creates a new AverageLinkDissimilarity
await(int) - Method in class jsat.utils.concurrent.TreeBarrier
Waits for all threads to reach this barrier.
await() - Method in class jsat.utils.ModifiableCountDownLatch
Waits until the count gets reduced to zero, and then all threads waiting will get to run.
awaitTermination(long, TimeUnit) - Method in class jsat.utils.FakeExecutor
 

B

b - Variable in class jsat.classifiers.svm.LSSVM
 
b - Variable in class jsat.classifiers.svm.PlattSMO
Bias
b_low - Variable in class jsat.classifiers.svm.LSSVM
 
b_low - Variable in class jsat.classifiers.svm.PlattSMO
Bias
b_up - Variable in class jsat.classifiers.svm.LSSVM
 
b_up - Variable in class jsat.classifiers.svm.PlattSMO
Bias
backprop(Vec, Vec, Vec, Vec) - Method in interface jsat.classifiers.neuralnetwork.activations.ActivationLayer
This method computes the backpropagated error to a given layer.
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in interface jsat.classifiers.neuralnetwork.activations.ActivationLayer
This method computes the backpropagated error to a given layer.
backprop(Vec, Vec, Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.LinearLayer
 
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.LinearLayer
 
backprop(Vec, Vec, Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.ReLU
 
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.ReLU
 
backprop(Vec, Vec, Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.SigmoidLayer
 
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.SigmoidLayer
 
backprop(Vec, Vec, Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.SoftmaxLayer
 
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.SoftmaxLayer
 
backprop(Vec, Vec, Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.SoftSignLayer
 
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.SoftSignLayer
 
backprop(Vec, Vec, Vec, Vec) - Method in class jsat.classifiers.neuralnetwork.activations.TanhLayer
 
backprop(Matrix, Matrix, Matrix, Matrix, boolean) - Method in class jsat.classifiers.neuralnetwork.activations.TanhLayer
 
BackPropagationNet - Class in jsat.classifiers.neuralnetwork
An implementation of a Feed Forward Neural Network (NN) trained by Back Propagation.
BackPropagationNet() - Constructor for class jsat.classifiers.neuralnetwork.BackPropagationNet
Creates a new back propagation network with one hidden layer of 1024 neurons.
BackPropagationNet(int...) - Constructor for class jsat.classifiers.neuralnetwork.BackPropagationNet
Creates a new back propagation network.
BackPropagationNet(BackPropagationNet) - Constructor for class jsat.classifiers.neuralnetwork.BackPropagationNet
Copy constructor
BackPropagationNet.ActivationFunction - Class in jsat.classifiers.neuralnetwork
The neural network needs an activation function for the neurons that is used to predict from inputs and train the network by propagating the errors back through the network.
BackPropagationNet.WeightInitialization - Enum in jsat.classifiers.neuralnetwork
Different methods of initializing the weight values before training
backSub(Matrix, Vec) - Static method in class jsat.linear.LUPDecomposition
Solves for the vector x such that U x = y
backSub(Matrix, Matrix) - Static method in class jsat.linear.LUPDecomposition
Solves for the matrix x such that U x = y
backSub(Matrix, Matrix, ExecutorService) - Static method in class jsat.linear.LUPDecomposition
Solves for the matrix x such that U x = y
BacktrackingArmijoLineSearch - Class in jsat.math.optimization
An implementation of Backtraking line search using the Armijo rule.
BacktrackingArmijoLineSearch() - Constructor for class jsat.math.optimization.BacktrackingArmijoLineSearch
Creates a new Backtracking line search
BacktrackingArmijoLineSearch(double, double) - Constructor for class jsat.math.optimization.BacktrackingArmijoLineSearch
Creates a new Backtracking line search object
backwardNaive(int, double...) - Method in class jsat.math.ContinuedFraction
Approximates the continued fraction using a naive approximation
Bagging - Class in jsat.classifiers.boosting
An implementation of Bootstrap Aggregating, as described by LEO BREIMAN in "Bagging Predictors".
Bagging(Classifier) - Constructor for class jsat.classifiers.boosting.Bagging
Creates a new Bagger for classification.
Bagging(Classifier, int, boolean) - Constructor for class jsat.classifiers.boosting.Bagging
Creates a new Bagger for classification.
Bagging(Classifier, int, boolean, int, Random) - Constructor for class jsat.classifiers.boosting.Bagging
Creates a new Bagger for classification.
Bagging(Regressor) - Constructor for class jsat.classifiers.boosting.Bagging
Creates a new Bagger for regression.
Bagging(Regressor, int, boolean) - Constructor for class jsat.classifiers.boosting.Bagging
Creates a new Bagger for regression.
Bagging(Regressor, int, boolean, int, Random) - Constructor for class jsat.classifiers.boosting.Bagging
Creates a new Bagger for regression.
BandwithGuassEstimate(Vec) - Static method in class jsat.distributions.empirical.KernelDensityEstimator
 
bar(String) - Static method in class jsat.text.GreekLetters
Puts an over line on top the string s.
base - Variable in class jsat.classifiers.calibration.BinaryCalibration
The base classifier to train and calibrate the outputs of
baseClassifier - Variable in class jsat.classifiers.OneVSOne
Main binary classifier
baseClassifier - Variable in class jsat.parameters.ModelSearch
 
BaseDriftDetector<V> - Class in jsat.driftdetectors
Base class for providing common functionality to drift detection algorithms
BaseDriftDetector() - Constructor for class jsat.driftdetectors.BaseDriftDetector
 
BaseDriftDetector(BaseDriftDetector<V>) - Constructor for class jsat.driftdetectors.BaseDriftDetector
Copy constructor
BaseKernelTrick - Class in jsat.distributions.kernels
This provides a simple base implementation for the cache related methods in Kernel Trick.
BaseKernelTrick() - Constructor for class jsat.distributions.kernels.BaseKernelTrick
 
BaseL2Kernel - Class in jsat.distributions.kernels
Many Kernels can be described in terms the L2 norm with some operations performed on it.
BaseL2Kernel() - Constructor for class jsat.distributions.kernels.BaseL2Kernel
 
baseLearner - Variable in class jsat.classifiers.boosting.LogitBoost
Weak learner to use, 'the oracle'
baseLearners - Variable in class jsat.classifiers.boosting.LogitBoost
Weak learners
baseRegressor - Variable in class jsat.parameters.ModelSearch
 
BaseUpdateableClassifier - Class in jsat.classifiers
A base implementation of the UpdateableClassifier.
BaseUpdateableClassifier() - Constructor for class jsat.classifiers.BaseUpdateableClassifier
Default constructor that does nothing
BaseUpdateableClassifier(BaseUpdateableClassifier) - Constructor for class jsat.classifiers.BaseUpdateableClassifier
Copy constructor
BaseUpdateableRegressor - Class in jsat.regression
A base implementation of the UpdateableRegressor.
BaseUpdateableRegressor() - Constructor for class jsat.regression.BaseUpdateableRegressor
 
BasicTextVectorCreator - Class in jsat.text
Creates new text vectors from a dictionary of known tokens and a word weighting scheme.
BasicTextVectorCreator(Tokenizer, Map<String, Integer>, WordWeighting) - Constructor for class jsat.text.BasicTextVectorCreator
Creates a new basic text vector creator
BBR - Class in jsat.classifiers.linear
This is an implementation of Bayesian Binary Regression for L1 and L2 regularized logistic regression.
BBR(double, int) - Constructor for class jsat.classifiers.linear.BBR
Creates a new BBR for L1 Logistic Regression object that will use the given regularization value.
BBR(double, int, BBR.Prior) - Constructor for class jsat.classifiers.linear.BBR
Creates a new BBR Logistic Regression object that will use the given regularization value.
BBR(int) - Constructor for class jsat.classifiers.linear.BBR
Creates a new BBR for L1 Logistic Regression object that will attempt to automatically determine the regularization value to use.
BBR(int, BBR.Prior) - Constructor for class jsat.classifiers.linear.BBR
Creates a new BBR Logistic Regression object that will attempt to automatically determine the regularization value to use.
BBR(BBR) - Constructor for class jsat.classifiers.linear.BBR
Copy constructor
BBR.Prior - Enum in jsat.classifiers.linear
Valid priors that control what type of regularization is applied
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
This method computes the value of the β variable.
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.MedianDissimilarity
 
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
bConst(int, int, int) - Method in class jsat.clustering.dissimilarity.WardsDissimilarity
 
BDS - Class in jsat.datatransform.featureselection
Bidirectional Search (BDS) is a greedy method of selecting a subset of features to use for prediction.
BDS(BDS) - Constructor for class jsat.datatransform.featureselection.BDS
Copy constructor
BDS(int, Classifier, int) - Constructor for class jsat.datatransform.featureselection.BDS
Creates a BDS feature selection for a classification problem
BDS(int, ClassificationDataSet, Classifier, int) - Constructor for class jsat.datatransform.featureselection.BDS
Performs BDS feature selection for a classification problem
BDS(int, Regressor, int) - Constructor for class jsat.datatransform.featureselection.BDS
Creates a BDS feature selection for a regression problem
BDS(int, RegressionDataSet, Regressor, int) - Constructor for class jsat.datatransform.featureselection.BDS
Performs BDS feature selection for a regression problem
bernoulli(int) - Static method in class jsat.math.SpecialMath
Computes an approximation to the n'th Bernoulli number Bn.
BestClassDistribution - Class in jsat.classifiers.bayesian
BestClassDistribution is a generic class for performing classification by fitting a MultivariateDistribution to each class.
BestClassDistribution(MultivariateDistribution) - Constructor for class jsat.classifiers.bayesian.BestClassDistribution
 
BestClassDistribution(MultivariateDistribution, boolean) - Constructor for class jsat.classifiers.bayesian.BestClassDistribution
 
BestClassDistribution(BestClassDistribution) - Constructor for class jsat.classifiers.bayesian.BestClassDistribution
Copy constructor
beta() - Method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
Returns an upper bound on the 2nd derivative for classification
Beta - Class in jsat.distributions
 
Beta(double, double) - Constructor for class jsat.distributions.Beta
 
beta(double, double) - Static method in class jsat.math.SpecialMath
Computes the Beta function B(z,w)
beta - Static variable in class jsat.text.GreekLetters
 
betaIncReg(double, double, double) - Static method in class jsat.math.SpecialMath
Computes the regularized incomplete beta function, Ix(a, b).
BFGS - Class in jsat.math.optimization
Implementation of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for function minimization.
BFGS() - Constructor for class jsat.math.optimization.BFGS
Creates a new BFGS optimization object that uses a maximum of 250 iterations and a backtracking line search.
BFGS(int, LineSearch) - Constructor for class jsat.math.optimization.BFGS
Creates a new BFGS optimization object
bias - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The bias term to add
BiastInitializer - Interface in jsat.classifiers.neuralnetwork.initializers
This interface specifies the method of initializing the bias connections in a neural network.
BinaryCalibration - Class in jsat.classifiers.calibration
This abstract class provides the frame work for an algorithm to perform probability calibration based on the outputs of a base learning algorithm for binary classification problems.
BinaryCalibration(BinaryScoreClassifier, BinaryCalibration.CalibrationMode) - Constructor for class jsat.classifiers.calibration.BinaryCalibration
Creates a new Binary Calibration object
BinaryCalibration.CalibrationMode - Enum in jsat.classifiers.calibration
Controls how the scores are obtained for producing a "training set" to calibrate the output of the underlying model.
BinaryScoreClassifier - Interface in jsat.classifiers.calibration
Many algorithms linear a binary separation between two classes A and B by representing the target labels with a -1 ad 1.
BinaryWordPresent - Class in jsat.text.wordweighting
Provides a simple binary representation of bag-of-word vectors by simply marking a value 1.0 if the token is present, and 0.0 if the token is not present.
BinaryWordPresent() - Constructor for class jsat.text.wordweighting.BinaryWordPresent
 
Binomial - Class in jsat.distributions.discrete
The Binomial distribution is the distribution for the number of successful, independent, trials with a specific probability of success
Binomial() - Constructor for class jsat.distributions.discrete.Binomial
Creates a new Binomial distribution for 1 trial with a 0.5 probability of success
Binomial(int, double) - Constructor for class jsat.distributions.discrete.Binomial
Creates a new Binomial distribution
Bisection - Class in jsat.math.rootfinding
 
Bisection() - Constructor for class jsat.math.rootfinding.Bisection
 
BiweightKF - Class in jsat.distributions.empirical.kernelfunc
 
BOGD - Class in jsat.classifiers.linear.kernelized
Bounded Online Gradient Descent (BOGD) is a kernel learning algorithm that uses a bounded number of support vectors.
BOGD(KernelTrick, int, double, double, double) - Constructor for class jsat.classifiers.linear.kernelized.BOGD
Creates a new BOGD++ learner using the HingeLoss
BOGD(KernelTrick, int, double, double, double, LossC) - Constructor for class jsat.classifiers.linear.kernelized.BOGD
Creates a new BOGD++ learner
BOGD(BOGD) - Constructor for class jsat.classifiers.linear.kernelized.BOGD
Copy constructor
BooleanParameter - Class in jsat.parameters
A boolean parameter that may be altered.
BooleanParameter() - Constructor for class jsat.parameters.BooleanParameter
 
BoundedSortedList<E extends Comparable<E>> - Class in jsat.utils
 
BoundedSortedList(int, int) - Constructor for class jsat.utils.BoundedSortedList
 
BoundedSortedList(int) - Constructor for class jsat.utils.BoundedSortedList
 
BoundedSortedSet<V> - Class in jsat.utils
A Sorted set that has a maximum number of values it will hold.
BoundedSortedSet(int) - Constructor for class jsat.utils.BoundedSortedSet
 
BoundedSortedSet(int, Comparator<? super V>) - Constructor for class jsat.utils.BoundedSortedSet
 
budgetStrategy - Variable in class jsat.distributions.kernels.KernelPoint
 

C

C - Variable in class jsat.classifiers.linear.kernelized.DUOL
 
c - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
cacheEvictions - Variable in class jsat.classifiers.svm.SupportVectorLearner
 
calibrate(boolean[], double[], int) - Method in class jsat.classifiers.calibration.BinaryCalibration
This method perform the model calibration on the outputs verse the class labels.
calibrate(boolean[], double[], int) - Method in class jsat.classifiers.calibration.IsotonicCalibration
 
calibrate(boolean[], double[], int) - Method in class jsat.classifiers.calibration.PlattCalibration
 
canBeMutated() - Method in class jsat.linear.Matrix
Indicates whether or not this matrix can be mutated.
canBeMutated() - Method in class jsat.linear.RandomMatrix
 
canBeMutated() - Method in class jsat.linear.RandomVector
 
canBeMutated() - Method in class jsat.linear.Vec
Indicates whether or not this vector can be mutated.
canMultiply(Matrix, Matrix) - Static method in class jsat.linear.Matrix
Convenience method that will return true only if the two input matrices have dimensions compatible for multiplying A*B
cat_imputs - Variable in class jsat.datatransform.Imputer
The values to impute for missing numeric columns
CategoricalData - Class in jsat.classifiers
 
CategoricalData(int) - Constructor for class jsat.classifiers.CategoricalData
 
categoricalData - Variable in class jsat.classifiers.DataPoint
 
CategoricalResults - Class in jsat.classifiers
This class represents the probabilities for each possible result classification.
CategoricalResults(int) - Constructor for class jsat.classifiers.CategoricalResults
Create a new Categorical Results, values will default to all zero.
CategoricalResults(double[]) - Constructor for class jsat.classifiers.CategoricalResults
Creates a new Categorical Result using the given array.
categoricalValues - Variable in class jsat.classifiers.DataPoint
 
categories - Variable in class jsat.DataSet
Contains the categories for each of the categorical variables
category - Variable in class jsat.classifiers.ClassificationDataSet
 
catIndexMap - Variable in class jsat.datatransform.RemoveAttributeTransform
 
Cauchy - Class in jsat.distributions
 
Cauchy(double, double) - Constructor for class jsat.distributions.Cauchy
 
Cauchy() - Constructor for class jsat.distributions.Cauchy
 
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
This method computes the value of the γ variable.
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.MedianDissimilarity
 
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
cConst(int, int, int) - Method in class jsat.clustering.dissimilarity.WardsDissimilarity
 
cdf(double) - Method in class jsat.distributions.Beta
 
cdf(double) - Method in class jsat.distributions.Cauchy
 
cdf(double) - Method in class jsat.distributions.ChiSquared
 
cdf(double) - Method in class jsat.distributions.ContinuousDistribution
 
cdf(int) - Method in class jsat.distributions.discrete.Binomial
 
cdf(int) - Method in class jsat.distributions.discrete.DiscreteDistribution
Computes the value of the Cumulative Density Function (CDF) at the given point.
cdf(double) - Method in class jsat.distributions.discrete.DiscreteDistribution
 
cdf(int) - Method in class jsat.distributions.discrete.Poisson
 
cdf(int) - Method in class jsat.distributions.discrete.UniformDiscrete
 
cdf(double) - Method in class jsat.distributions.Distribution
Computes the value of the Cumulative Density Function (CDF) at the given point.
cdf(double) - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
cdf(double) - Method in class jsat.distributions.Exponential
 
cdf(double) - Method in class jsat.distributions.FisherSendor
 
cdf(double) - Method in class jsat.distributions.Gamma
 
cdf(double) - Method in class jsat.distributions.Kolmogorov
 
cdf(double) - Method in class jsat.distributions.Laplace
 
cdf(double) - Method in class jsat.distributions.Levy
 
cdf(double) - Method in class jsat.distributions.Logistic
 
cdf(double) - Method in class jsat.distributions.LogNormal
 
cdf(double) - Method in class jsat.distributions.LogUniform
 
cdf(double) - Method in class jsat.distributions.MaxwellBoltzmann
 
cdf(double, double, double) - Static method in class jsat.distributions.Normal
 
cdf(double) - Method in class jsat.distributions.Normal
 
cdf(double) - Method in class jsat.distributions.Pareto
 
cdf(double) - Method in class jsat.distributions.Rayleigh
 
cdf(double) - Method in class jsat.distributions.StudentT
 
cdf(double) - Method in class jsat.distributions.TruncatedDistribution
 
cdf(double) - Method in class jsat.distributions.Uniform
 
cdf(double) - Method in class jsat.distributions.Weibull
 
cDiv(double, double, double, double, double[]) - Static method in class jsat.math.Complex
Performs a complex division operation.
CentroidDissimilarity - Class in jsat.clustering.dissimilarity
Average similarity of all data point pairs between clusters, inter-cluster pairs are ignored.
CentroidDissimilarity() - Constructor for class jsat.clustering.dissimilarity.CentroidDissimilarity
Creates a new CentroidDissimilarity that used the EuclideanDistance
CentroidDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.CentroidDissimilarity
Creates a new CentroidDissimilarity
changeSize(int, int) - Method in class jsat.linear.DenseMatrix
 
changeSize(int, int) - Method in class jsat.linear.Matrix
This method alters the size of a matrix, either adding or subtracting rows from the internal structure of the matrix.
changeSize(int, int) - Method in class jsat.linear.MatrixOfVecs
 
changeSize(int, int) - Method in class jsat.linear.RandomMatrix
 
changeSize(int, int) - Method in class jsat.linear.SparseMatrix
 
changeSize(int, int) - Method in class jsat.linear.SubMatrix
This method alters the size of a matrix, either adding or subtracting rows from the internal structure of the matrix.
changeSize(int, int) - Method in class jsat.linear.TransposeView
 
ChebyshevDistance - Class in jsat.linear.distancemetrics
Chebyshev Distance is the L norm.
ChebyshevDistance() - Constructor for class jsat.linear.distancemetrics.ChebyshevDistance
 
chi - Static variable in class jsat.text.GreekLetters
 
childrenCount() - Method in class jsat.classifiers.trees.DecisionTree.Node
 
childrenCount() - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns the number of children this node of the tree has, and may return a non zero value even if the node is a leaf
ChiSquared - Class in jsat.distributions
 
ChiSquared(double) - Constructor for class jsat.distributions.ChiSquared
 
CholeskyDecomposition - Class in jsat.linear
The Cholesky Decomposition factors a symmetric positive definite matrix A into the form A = L LT.
CholeskyDecomposition(Matrix) - Constructor for class jsat.linear.CholeskyDecomposition
Computes the Cholesky Decomposition of the matrix A.
CholeskyDecomposition(Matrix, ExecutorService) - Constructor for class jsat.linear.CholeskyDecomposition
Computes the Cholesky Decomposition of the matrix A.
CLARA - Class in jsat.clustering
 
CLARA(int, int, DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.CLARA
 
CLARA(int, DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.CLARA
 
CLARA(DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.CLARA
 
CLARA(DistanceMetric, Random) - Constructor for class jsat.clustering.CLARA
 
CLARA(DistanceMetric) - Constructor for class jsat.clustering.CLARA
 
CLARA() - Constructor for class jsat.clustering.CLARA
 
CLARA(CLARA) - Constructor for class jsat.clustering.CLARA
Copy constructor
classBudget - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
ClassificationDataSet - Class in jsat.classifiers
ClassificationDataSet is a data set meant specifically for classification problems.
ClassificationDataSet(DataSet, int) - Constructor for class jsat.classifiers.ClassificationDataSet
Creates a new data set for classification problems.
ClassificationDataSet(List<DataPoint>, int) - Constructor for class jsat.classifiers.ClassificationDataSet
Creates a new data set for classification problems from the given list of data points.
ClassificationDataSet(List<DataPointPair<Integer>>, CategoricalData) - Constructor for class jsat.classifiers.ClassificationDataSet
Creates a new data set for classification problems from the given list of data points.
ClassificationDataSet(int, CategoricalData[], CategoricalData) - Constructor for class jsat.classifiers.ClassificationDataSet
Creates a new, empty, data set for classification problems.
ClassificationHashedTextDataLoader - Class in jsat.text
This class provides a framework for loading classification datasets made of text documents as hashed feature vectors.
ClassificationHashedTextDataLoader(Tokenizer, WordWeighting) - Constructor for class jsat.text.ClassificationHashedTextDataLoader
Creates an new hashed text data loader for classification problems, it uses a relatively large default size of 222 for the dimension of the space.
ClassificationHashedTextDataLoader(int, Tokenizer, WordWeighting) - Constructor for class jsat.text.ClassificationHashedTextDataLoader
Creates an new hashed text data loader for classification problems.
ClassificationModelEvaluation - Class in jsat.classifiers
Provides a mechanism to quickly perform an evaluation of a model on a data set.
ClassificationModelEvaluation(Classifier, ClassificationDataSet) - Constructor for class jsat.classifiers.ClassificationModelEvaluation
Constructs a new object that can perform evaluations on the model.
ClassificationModelEvaluation(Classifier, ClassificationDataSet, ExecutorService) - Constructor for class jsat.classifiers.ClassificationModelEvaluation
Constructs a new object that can perform evaluations on the model.
ClassificationScore - Interface in jsat.classifiers.evaluation
This interface defines the contract for evaluating or "scoring" the results on a classification problem.
classificationTargetScore - Variable in class jsat.parameters.ModelSearch
 
ClassificationTextDataLoader - Class in jsat.text
This class provides a framework for loading classification datasets made of text documents as vectors.
ClassificationTextDataLoader(Tokenizer, WordWeighting) - Constructor for class jsat.text.ClassificationTextDataLoader
Creates a new text data loader
Classifier - Interface in jsat.classifiers
A Classifier is used to predict the target class of new unseen data points.
classify(DataPoint) - Method in class jsat.classifiers.bayesian.AODE
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.NaiveBayes
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
 
classify(DataPoint) - Method in class jsat.classifiers.bayesian.ODE
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.AdaBoostM1
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.ArcX4
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.Bagging
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.EmphasisBoost
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.LogitBoost
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.SAMME
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.Stacking
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
classify(DataPoint) - Method in class jsat.classifiers.boosting.Wagging
 
classify(DataPoint) - Method in class jsat.classifiers.calibration.IsotonicCalibration
 
classify(DataPoint) - Method in class jsat.classifiers.calibration.PlattCalibration
 
classify(DataPoint) - Method in interface jsat.classifiers.Classifier
Performs classification on the given data point.
classify(DataPoint) - Method in class jsat.classifiers.DDAG
 
classify(DataPoint) - Method in class jsat.classifiers.knn.DANN
 
classify(DataPoint) - Method in class jsat.classifiers.knn.LWL
 
classify(DataPoint) - Method in class jsat.classifiers.knn.NearestNeighbour
 
classify(DataPoint) - Method in class jsat.classifiers.linear.ALMA2
 
classify(DataPoint) - Method in class jsat.classifiers.linear.AROW
 
classify(DataPoint) - Method in class jsat.classifiers.linear.BBR
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.BOGD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.DUOL
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.OSKL
 
classify(DataPoint) - Method in class jsat.classifiers.linear.kernelized.Projectron
 
classify(DataPoint) - Method in class jsat.classifiers.linear.LinearBatch
 
classify(DataPoint) - Method in class jsat.classifiers.linear.LinearL1SCD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.LinearSGD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.NewGLMNET
 
classify(DataPoint) - Method in class jsat.classifiers.linear.NHERD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.PassiveAggressive
 
classify(DataPoint) - Method in class jsat.classifiers.linear.ROMMA
 
classify(DataPoint) - Method in class jsat.classifiers.linear.SCD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.SCW
 
classify(DataPoint) - Method in class jsat.classifiers.linear.SMIDAS
 
classify(DataPoint) - Method in class jsat.classifiers.linear.SPA
 
classify(DataPoint) - Method in class jsat.classifiers.linear.STGD
 
classify(DataPoint) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
classify(double) - Method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
The categorical results for a classification problem
classify(DataPoint) - Method in class jsat.classifiers.MajorityVote
 
classify(DataPoint) - Method in class jsat.classifiers.MultinomialLogisticRegression
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.LVQ
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.LVQLLC
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
classify(DataPoint) - Method in class jsat.classifiers.neuralnetwork.SOM
 
classify(DataPoint) - Method in class jsat.classifiers.OneVSAll
 
classify(DataPoint) - Method in class jsat.classifiers.OneVSOne
 
classify(DataPoint) - Method in class jsat.classifiers.PriorClassifier
 
classify(DataPoint) - Method in class jsat.classifiers.RegressorToClassifier
 
classify(DataPoint) - Method in class jsat.classifiers.Rocchio
 
classify(DataPoint) - Method in class jsat.classifiers.svm.DCD
 
classify(DataPoint) - Method in class jsat.classifiers.svm.DCDs
 
classify(DataPoint) - Method in class jsat.classifiers.svm.DCSVM
 
classify(DataPoint) - Method in class jsat.classifiers.svm.extended.CPM
 
classify(DataPoint) - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
classify(DataPoint) - Method in class jsat.classifiers.svm.LSSVM
 
classify(DataPoint) - Method in class jsat.classifiers.svm.Pegasos
 
classify(DataPoint) - Method in class jsat.classifiers.svm.PegasosK
 
classify(DataPoint) - Method in class jsat.classifiers.svm.PlattSMO
 
classify(DataPoint) - Method in class jsat.classifiers.svm.SBP
 
classify(DataPoint) - Method in class jsat.classifiers.svm.SVMnoBias
 
classify(DataPoint) - Method in class jsat.classifiers.trees.DecisionStump
 
classify(DataPoint) - Method in class jsat.classifiers.trees.DecisionTree
 
classify(DataPoint) - Method in class jsat.classifiers.trees.ERTrees
 
classify(DataPoint) - Method in class jsat.classifiers.trees.ExtraTree
 
classify(DataPoint) - Method in class jsat.classifiers.trees.ID3
 
classify(DataPoint) - Method in class jsat.classifiers.trees.RandomForest
 
classify(DataPoint) - Method in class jsat.classifiers.trees.TreeNodeVisitor
 
classify(DataPoint) - Method in class jsat.datatransform.DataModelPipeline
 
classify(double) - Static method in class jsat.lossfunctions.HingeLoss
 
classify(double) - Static method in class jsat.lossfunctions.LogisticLoss
 
classify(DataPoint) - Method in class jsat.parameters.ModelSearch
 
classify(DataPoint) - Method in class jsat.regression.LogisticRegression
 
classLabels - Variable in class jsat.text.ClassificationHashedTextDataLoader
The list of the true class labels for the data that was loaded before HashedTextDataLoader.finishAdding() was called.
classLabels - Variable in class jsat.text.ClassificationTextDataLoader
The list of the true class labels for the data that was loaded before TextDataLoader.finishAdding() was called.
classSampleCount(int) - Method in class jsat.classifiers.ClassificationDataSet
Returns the number of data points that belong to the specified class, irrespective of the weights of the individual points.
clear() - Method in class jsat.utils.DoubleList
 
clear() - Method in class jsat.utils.IntDoubleMap
 
clear() - Method in class jsat.utils.IntDoubleMapArray
 
clear() - Method in class jsat.utils.IntList
 
clear() - Method in class jsat.utils.IntPriorityQueue
 
clear() - Method in class jsat.utils.IntSet
 
clear() - Method in class jsat.utils.LongDoubleMap
 
clear() - Method in class jsat.utils.LongList
 
clearHistory() - Method in class jsat.driftdetectors.BaseDriftDetector
Clears the current history
clone() - Method in class jsat.classifiers.BaseUpdateableClassifier
 
clone() - Method in class jsat.classifiers.bayesian.AODE
 
clone() - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
clone() - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
 
clone() - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
 
clone() - Method in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
 
clone() - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
clone() - Method in class jsat.classifiers.bayesian.MultivariateNormals
 
clone() - Method in class jsat.classifiers.bayesian.NaiveBayes
 
clone() - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
 
clone() - Method in class jsat.classifiers.bayesian.ODE
 
clone() - Method in class jsat.classifiers.boosting.AdaBoostM1
 
clone() - Method in class jsat.classifiers.boosting.AdaBoostM1PL
 
clone() - Method in class jsat.classifiers.boosting.ArcX4
 
clone() - Method in class jsat.classifiers.boosting.Bagging
 
clone() - Method in class jsat.classifiers.boosting.EmphasisBoost
 
clone() - Method in class jsat.classifiers.boosting.LogitBoost
 
clone() - Method in class jsat.classifiers.boosting.LogitBoostPL
 
clone() - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
clone() - Method in class jsat.classifiers.boosting.SAMME
 
clone() - Method in class jsat.classifiers.boosting.Stacking
 
clone() - Method in class jsat.classifiers.boosting.UpdatableStacking
 
clone() - Method in class jsat.classifiers.boosting.Wagging
 
clone() - Method in class jsat.classifiers.boosting.WaggingNormal
 
clone() - Method in class jsat.classifiers.calibration.BinaryCalibration
 
clone() - Method in interface jsat.classifiers.calibration.BinaryScoreClassifier
 
clone() - Method in class jsat.classifiers.calibration.IsotonicCalibration
 
clone() - Method in class jsat.classifiers.calibration.PlattCalibration
 
clone() - Method in class jsat.classifiers.CategoricalData
 
clone() - Method in class jsat.classifiers.CategoricalResults
Creates a deep clone of this
clone() - Method in interface jsat.classifiers.Classifier
 
clone() - Method in class jsat.classifiers.DataPoint
Creates a deep clone of this data point, such that altering either data point does not effect the other one.
clone() - Method in class jsat.classifiers.DDAG
 
clone() - Method in class jsat.classifiers.evaluation.Accuracy
 
clone() - Method in class jsat.classifiers.evaluation.AUC
 
clone() - Method in interface jsat.classifiers.evaluation.ClassificationScore
 
clone() - Method in class jsat.classifiers.evaluation.F1Score
 
clone() - Method in class jsat.classifiers.evaluation.FbetaScore
 
clone() - Method in class jsat.classifiers.evaluation.Kappa
 
clone() - Method in class jsat.classifiers.evaluation.LogLoss
 
clone() - Method in class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
clone() - Method in class jsat.classifiers.evaluation.Precision
 
clone() - Method in class jsat.classifiers.evaluation.Recall
 
clone() - Method in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
clone() - Method in class jsat.classifiers.knn.DANN
 
clone() - Method in class jsat.classifiers.knn.LWL
 
clone() - Method in class jsat.classifiers.knn.NearestNeighbour
 
clone() - Method in class jsat.classifiers.linear.ALMA2
 
clone() - Method in class jsat.classifiers.linear.AROW
 
clone() - Method in class jsat.classifiers.linear.BBR
 
clone() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
clone() - Method in class jsat.classifiers.linear.kernelized.BOGD
 
clone() - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
clone() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
clone() - Method in class jsat.classifiers.linear.kernelized.DUOL
 
clone() - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
clone() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
clone() - Method in class jsat.classifiers.linear.kernelized.OSKL
 
clone() - Method in class jsat.classifiers.linear.kernelized.Projectron
 
clone() - Method in class jsat.classifiers.linear.LinearBatch
 
clone() - Method in class jsat.classifiers.linear.LinearL1SCD
 
clone() - Method in class jsat.classifiers.linear.LinearSGD
 
clone() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
clone() - Method in class jsat.classifiers.linear.NewGLMNET
 
clone() - Method in class jsat.classifiers.linear.NHERD
 
clone() - Method in class jsat.classifiers.linear.PassiveAggressive
 
clone() - Method in class jsat.classifiers.linear.ROMMA
 
clone() - Method in class jsat.classifiers.linear.SCD
 
clone() - Method in class jsat.classifiers.linear.SCW
 
clone() - Method in class jsat.classifiers.linear.SMIDAS
 
clone() - Method in class jsat.classifiers.linear.SPA
 
clone() - Method in class jsat.classifiers.linear.STGD
 
clone() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
clone() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
clone() - Method in class jsat.classifiers.MajorityVote
 
clone() - Method in class jsat.classifiers.MultinomialLogisticRegression
 
clone() - Method in interface jsat.classifiers.neuralnetwork.activations.ActivationLayer
 
clone() - Method in class jsat.classifiers.neuralnetwork.activations.LinearLayer
 
clone() - Method in class jsat.classifiers.neuralnetwork.activations.ReLU
 
clone() - Method in class jsat.classifiers.neuralnetwork.activations.SigmoidLayer
 
clone() - Method in class jsat.classifiers.neuralnetwork.activations.SoftmaxLayer
 
clone() - Method in class jsat.classifiers.neuralnetwork.activations.SoftSignLayer
 
clone() - Method in class jsat.classifiers.neuralnetwork.activations.TanhLayer
 
clone() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
clone() - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
clone() - Method in interface jsat.classifiers.neuralnetwork.initializers.BiastInitializer
 
clone() - Method in class jsat.classifiers.neuralnetwork.initializers.ConstantInit
 
clone() - Method in class jsat.classifiers.neuralnetwork.initializers.GaussianNormalInit
 
clone() - Method in class jsat.classifiers.neuralnetwork.initializers.TanhInitializer
 
clone() - Method in interface jsat.classifiers.neuralnetwork.initializers.WeightInitializer
 
clone() - Method in class jsat.classifiers.neuralnetwork.LVQ
 
clone() - Method in class jsat.classifiers.neuralnetwork.LVQLLC
 
clone() - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
clone() - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
clone() - Method in class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
 
clone() - Method in interface jsat.classifiers.neuralnetwork.regularizers.WeightRegularizer
 
clone() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
clone() - Method in class jsat.classifiers.neuralnetwork.SOM
 
clone() - Method in class jsat.classifiers.OneVSAll
 
clone() - Method in class jsat.classifiers.OneVSOne
 
clone() - Method in class jsat.classifiers.PriorClassifier
 
clone() - Method in class jsat.classifiers.RegressorToClassifier
 
clone() - Method in class jsat.classifiers.Rocchio
 
clone() - Method in class jsat.classifiers.svm.DCD
 
clone() - Method in class jsat.classifiers.svm.DCDs
 
clone() - Method in class jsat.classifiers.svm.DCSVM
 
clone() - Method in class jsat.classifiers.svm.extended.AMM
 
clone() - Method in class jsat.classifiers.svm.extended.CPM
 
clone() - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
clone() - Method in class jsat.classifiers.svm.LSSVM
 
clone() - Method in class jsat.classifiers.svm.Pegasos
 
clone() - Method in class jsat.classifiers.svm.PegasosK
 
clone() - Method in class jsat.classifiers.svm.PlattSMO
 
clone() - Method in class jsat.classifiers.svm.SBP
 
clone() - Method in class jsat.classifiers.svm.SVMnoBias
 
clone() - Method in class jsat.classifiers.trees.DecisionStump
 
clone() - Method in class jsat.classifiers.trees.DecisionTree
 
clone() - Method in class jsat.classifiers.trees.DecisionTree.Node
 
clone() - Method in class jsat.classifiers.trees.ERTrees
 
clone() - Method in class jsat.classifiers.trees.ExtraTree
 
clone() - Method in class jsat.classifiers.trees.ID3
 
clone() - Method in class jsat.classifiers.trees.ImpurityScore
 
clone() - Method in class jsat.classifiers.trees.RandomDecisionTree
 
clone() - Method in class jsat.classifiers.trees.RandomForest
 
clone() - Method in class jsat.classifiers.trees.TreeNodeVisitor
 
clone() - Method in interface jsat.classifiers.UpdateableClassifier
 
clone() - Method in class jsat.clustering.CLARA
 
clone() - Method in interface jsat.clustering.Clusterer
 
clone() - Method in class jsat.clustering.ClustererBase
 
clone() - Method in class jsat.clustering.DBSCAN
 
clone() - Method in class jsat.clustering.dissimilarity.AbstractClusterDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
clone() - Method in interface jsat.clustering.dissimilarity.ClusterDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.DistanceMetricDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.MedianDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
clone() - Method in interface jsat.clustering.dissimilarity.UpdatableClusterDissimilarity
 
clone() - Method in class jsat.clustering.dissimilarity.WardsDissimilarity
 
clone() - Method in class jsat.clustering.EMGaussianMixture
 
clone() - Method in class jsat.clustering.evaluation.AdjustedRandIndex
 
clone() - Method in interface jsat.clustering.evaluation.ClusterEvaluation
 
clone() - Method in class jsat.clustering.evaluation.ClusterEvaluationBase
 
clone() - Method in class jsat.clustering.evaluation.DaviesBouldinIndex
 
clone() - Method in class jsat.clustering.evaluation.DunnIndex
 
clone() - Method in interface jsat.clustering.evaluation.intra.IntraClusterEvaluation
 
clone() - Method in class jsat.clustering.evaluation.intra.MaxDistance
 
clone() - Method in class jsat.clustering.evaluation.intra.MeanCentroidDistance
 
clone() - Method in class jsat.clustering.evaluation.intra.MeanDistance
 
clone() - Method in class jsat.clustering.evaluation.intra.SoSCentroidDistance
 
clone() - Method in class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
 
clone() - Method in class jsat.clustering.evaluation.IntraClusterSumEvaluation
 
clone() - Method in class jsat.clustering.evaluation.NormalizedMutualInformation
 
clone() - Method in class jsat.clustering.FLAME
 
clone() - Method in class jsat.clustering.GapStatistic
 
clone() - Method in class jsat.clustering.HDBSCAN
 
clone() - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
clone() - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
clone() - Method in class jsat.clustering.hierarchical.NNChainHAC
 
clone() - Method in class jsat.clustering.hierarchical.PriorityHAC
 
clone() - Method in class jsat.clustering.hierarchical.SimpleHAC
 
clone() - Method in interface jsat.clustering.KClusterer
 
clone() - Method in class jsat.clustering.KClustererBase
 
clone() - Method in class jsat.clustering.kmeans.ElkanKernelKMeans
 
clone() - Method in class jsat.clustering.kmeans.ElkanKMeans
 
clone() - Method in class jsat.clustering.kmeans.GMeans
 
clone() - Method in class jsat.clustering.kmeans.HamerlyKMeans
 
clone() - Method in class jsat.clustering.kmeans.KernelKMeans
 
clone() - Method in class jsat.clustering.kmeans.KMeans
 
clone() - Method in class jsat.clustering.kmeans.KMeansPDN
 
clone() - Method in class jsat.clustering.kmeans.LloydKernelKMeans
 
clone() - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
clone() - Method in class jsat.clustering.kmeans.NaiveKMeans
 
clone() - Method in class jsat.clustering.kmeans.XMeans
 
clone() - Method in class jsat.clustering.LSDBC
 
clone() - Method in class jsat.clustering.MeanShift
 
clone() - Method in class jsat.clustering.OPTICS
 
clone() - Method in class jsat.clustering.PAM
 
clone() - Method in class jsat.datatransform.AutoDeskewTransform
 
clone() - Method in class jsat.datatransform.DataModelPipeline
 
clone() - Method in interface jsat.datatransform.DataTransform
 
clone() - Method in class jsat.datatransform.DataTransformBase
 
clone() - Method in class jsat.datatransform.DataTransformProcess
 
clone() - Method in class jsat.datatransform.DenseSparceTransform
 
clone() - Method in class jsat.datatransform.FastICA
 
clone() - Method in class jsat.datatransform.featureselection.BDS
 
clone() - Method in class jsat.datatransform.featureselection.LRS
 
clone() - Method in class jsat.datatransform.featureselection.MutualInfoFS
 
clone() - Method in class jsat.datatransform.featureselection.ReliefF
 
clone() - Method in class jsat.datatransform.featureselection.SBS
 
clone() - Method in class jsat.datatransform.featureselection.SFS
 
clone() - Method in class jsat.datatransform.Imputer
 
clone() - Method in interface jsat.datatransform.InPlaceInvertibleTransform
 
clone() - Method in class jsat.datatransform.InsertMissingValuesTransform
 
clone() - Method in class jsat.datatransform.InverseOfTransform
 
clone() - Method in interface jsat.datatransform.InvertibleTransform
 
clone() - Method in class jsat.datatransform.JLTransform
 
clone() - Method in class jsat.datatransform.kernel.KernelPCA
 
clone() - Method in class jsat.datatransform.kernel.Nystrom
 
clone() - Method in class jsat.datatransform.kernel.RFF_RBF
 
clone() - Method in class jsat.datatransform.LinearTransform
 
clone() - Method in class jsat.datatransform.NominalToNumeric
 
clone() - Method in class jsat.datatransform.NumericalToHistogram
 
clone() - Method in class jsat.datatransform.PCA
 
clone() - Method in class jsat.datatransform.PNormNormalization
 
clone() - Method in class jsat.datatransform.PolynomialTransform
 
clone() - Method in class jsat.datatransform.RemoveAttributeTransform
 
clone() - Method in class jsat.datatransform.StandardizeTransform
 
clone() - Method in class jsat.datatransform.UnitVarianceTransform
 
clone() - Method in class jsat.datatransform.WhitenedPCA
 
clone() - Method in class jsat.datatransform.ZeroMeanTransform
 
clone() - Method in class jsat.distributions.Beta
 
clone() - Method in class jsat.distributions.Cauchy
 
clone() - Method in class jsat.distributions.ChiSquared
 
clone() - Method in class jsat.distributions.ContinuousDistribution
 
clone() - Method in class jsat.distributions.discrete.Binomial
 
clone() - Method in class jsat.distributions.discrete.DiscreteDistribution
 
clone() - Method in class jsat.distributions.discrete.Poisson
 
clone() - Method in class jsat.distributions.discrete.UniformDiscrete
 
clone() - Method in class jsat.distributions.Distribution
 
clone() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
clone() - Method in class jsat.distributions.Exponential
 
clone() - Method in class jsat.distributions.FisherSendor
 
clone() - Method in class jsat.distributions.Gamma
 
clone() - Method in class jsat.distributions.kernels.BaseKernelTrick
 
clone() - Method in class jsat.distributions.kernels.BaseL2Kernel
 
clone() - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
clone() - Method in class jsat.distributions.kernels.GeneralRBFKernel
 
clone() - Method in class jsat.distributions.kernels.KernelPoint
 
clone() - Method in class jsat.distributions.kernels.KernelPoints
 
clone() - Method in interface jsat.distributions.kernels.KernelTrick
 
clone() - Method in class jsat.distributions.kernels.LinearKernel
 
clone() - Method in class jsat.distributions.kernels.NormalizedKernel
 
clone() - Method in class jsat.distributions.kernels.PolynomialKernel
 
clone() - Method in class jsat.distributions.kernels.PukKernel
 
clone() - Method in class jsat.distributions.kernels.RationalQuadraticKernel
 
clone() - Method in class jsat.distributions.kernels.RBFKernel
 
clone() - Method in class jsat.distributions.kernels.SigmoidKernel
 
clone() - Method in class jsat.distributions.Kolmogorov
 
clone() - Method in class jsat.distributions.Laplace
 
clone() - Method in class jsat.distributions.Levy
 
clone() - Method in class jsat.distributions.Logistic
 
clone() - Method in class jsat.distributions.LogNormal
 
clone() - Method in class jsat.distributions.LogUniform
 
clone() - Method in class jsat.distributions.MaxwellBoltzmann
 
clone() - Method in class jsat.distributions.multivariate.Dirichlet
 
clone() - Method in class jsat.distributions.multivariate.MetricKDE
 
clone() - Method in interface jsat.distributions.multivariate.MultivariateDistribution
 
clone() - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
clone() - Method in class jsat.distributions.multivariate.MultivariateKDE
 
clone() - Method in class jsat.distributions.multivariate.NormalM
 
clone() - Method in class jsat.distributions.multivariate.ProductKDE
 
clone() - Method in class jsat.distributions.multivariate.SymmetricDirichlet
 
clone() - Method in class jsat.distributions.Normal
 
clone() - Method in class jsat.distributions.Pareto
 
clone() - Method in class jsat.distributions.Rayleigh
 
clone() - Method in class jsat.distributions.StudentT
 
clone() - Method in class jsat.distributions.TruncatedDistribution
 
clone() - Method in class jsat.distributions.Uniform
 
clone() - Method in class jsat.distributions.Weibull
 
clone() - Method in class jsat.driftdetectors.ADWIN
 
clone() - Method in class jsat.driftdetectors.BaseDriftDetector
 
clone() - Method in class jsat.driftdetectors.DDM
 
clone() - Method in class jsat.linear.ConcatenatedVec
 
clone() - Method in class jsat.linear.ConstantVector
 
clone() - Method in class jsat.linear.DenseMatrix
 
clone() - Method in class jsat.linear.DenseVector
 
clone() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
clone() - Method in class jsat.linear.distancemetrics.CosineDistance
 
clone() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
clone() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
clone() - Method in interface jsat.linear.distancemetrics.DistanceMetric
 
clone() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
clone() - Method in class jsat.linear.distancemetrics.KernelDistance
 
clone() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
clone() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
clone() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
clone() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
clone() - Method in class jsat.linear.distancemetrics.PearsonDistance
 
clone() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
clone() - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
 
clone() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
clone() - Method in class jsat.linear.GenericMatrix
 
clone() - Method in class jsat.linear.LUPDecomposition
 
clone() - Method in class jsat.linear.Matrix
 
clone() - Method in class jsat.linear.MatrixOfVecs
 
clone() - Method in class jsat.linear.Poly2Vec
 
clone() - Method in class jsat.linear.RandomVector
 
clone() - Method in class jsat.linear.ScaledVector
 
clone() - Method in class jsat.linear.ShiftedVec
 
clone() - Method in class jsat.linear.SingularValueDecomposition
 
clone() - Method in class jsat.linear.SparseMatrix
 
clone() - Method in class jsat.linear.SparseVector
 
clone() - Method in class jsat.linear.SubVector
 
clone() - Method in class jsat.linear.Vec
 
clone() - Method in class jsat.linear.VecPaired
 
clone() - Method in class jsat.linear.vectorcollection.CoverTree
 
clone() - Method in class jsat.linear.vectorcollection.CoverTree.CoverTreeFactory
 
clone() - Method in class jsat.linear.vectorcollection.DefaultVectorCollectionFactory
 
clone() - Method in class jsat.linear.vectorcollection.EuclideanCollection
 
clone() - Method in class jsat.linear.vectorcollection.EuclideanCollection.EuclideanCollectionFactory
 
clone() - Method in interface jsat.linear.vectorcollection.IncrementalCollection
 
clone() - Method in class jsat.linear.vectorcollection.KDTree
 
clone() - Method in class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
clone() - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
 
clone() - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH.RandomProjectionLSHFactory
 
clone() - Method in class jsat.linear.vectorcollection.RandomBallCover
 
clone() - Method in class jsat.linear.vectorcollection.RandomBallCover.RandomBallCoverFactory
 
clone() - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot
 
clone() - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot.RandomBallCoverOneShotFactory
 
clone() - Method in class jsat.linear.vectorcollection.RTree
 
clone() - Method in class jsat.linear.vectorcollection.RTree.RTreeFactory
 
clone() - Method in class jsat.linear.vectorcollection.VectorArray
 
clone() - Method in class jsat.linear.vectorcollection.VectorArray.VectorArrayFactory
 
clone() - Method in interface jsat.linear.vectorcollection.VectorCollection
 
clone() - Method in interface jsat.linear.vectorcollection.VectorCollectionFactory
 
clone() - Method in class jsat.linear.vectorcollection.VPTree
 
clone() - Method in class jsat.linear.vectorcollection.VPTree.VPTreeFactory
 
clone() - Method in class jsat.linear.vectorcollection.VPTreeMV.VPTreeMVFactory
 
clone() - Method in class jsat.linear.VecWithNorm
 
clone() - Method in class jsat.lossfunctions.AbsoluteLoss
 
clone() - Method in class jsat.lossfunctions.EpsilonInsensitiveLoss
 
clone() - Method in class jsat.lossfunctions.HingeLoss
 
clone() - Method in class jsat.lossfunctions.HuberLoss
 
clone() - Method in class jsat.lossfunctions.LogisticLoss
 
clone() - Method in interface jsat.lossfunctions.LossC
 
clone() - Method in interface jsat.lossfunctions.LossFunc
 
clone() - Method in interface jsat.lossfunctions.LossR
 
clone() - Method in class jsat.lossfunctions.SquaredLoss
 
clone() - Method in class jsat.math.Complex
 
clone() - Method in interface jsat.math.decayrates.DecayRate
 
clone() - Method in class jsat.math.decayrates.ExponetialDecay
 
clone() - Method in class jsat.math.decayrates.InverseDecay
 
clone() - Method in class jsat.math.decayrates.LinearDecay
 
clone() - Method in class jsat.math.decayrates.NoDecay
 
clone() - Method in class jsat.math.decayrates.PowerDecay
 
clone() - Method in class jsat.math.OnLineStatistics
 
clone() - Method in class jsat.math.optimization.BacktrackingArmijoLineSearch
 
clone() - Method in class jsat.math.optimization.BFGS
 
clone() - Method in class jsat.math.optimization.LBFGS
 
clone() - Method in interface jsat.math.optimization.LineSearch
Returns a clone of the line search object
clone() - Method in class jsat.math.optimization.ModifiedOWLQN
 
clone() - Method in interface jsat.math.optimization.Optimizer2
 
clone() - Method in class jsat.math.optimization.stochastic.AdaDelta
 
clone() - Method in class jsat.math.optimization.stochastic.AdaGrad
 
clone() - Method in class jsat.math.optimization.stochastic.Adam
 
clone() - Method in interface jsat.math.optimization.stochastic.GradientUpdater
 
clone() - Method in class jsat.math.optimization.stochastic.NAdaGrad
 
clone() - Method in class jsat.math.optimization.stochastic.RMSProp
 
clone() - Method in class jsat.math.optimization.stochastic.Rprop
 
clone() - Method in class jsat.math.optimization.stochastic.SGDMomentum
 
clone() - Method in class jsat.math.optimization.stochastic.SimpleSGD
 
clone() - Method in class jsat.math.optimization.WolfeNWLineSearch
 
clone() - Method in class jsat.parameters.GridSearch
 
clone() - Method in class jsat.parameters.ModelSearch
 
clone() - Method in class jsat.parameters.RandomSearch
 
clone() - Method in class jsat.regression.AveragedRegressor
 
clone() - Method in class jsat.regression.BaseUpdateableRegressor
 
clone() - Method in class jsat.regression.evaluation.CoefficientOfDetermination
 
clone() - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
clone() - Method in class jsat.regression.evaluation.MeanSquaredError
 
clone() - Method in interface jsat.regression.evaluation.RegressionScore
 
clone() - Method in class jsat.regression.evaluation.RelativeAbsoluteError
 
clone() - Method in class jsat.regression.evaluation.RelativeSquaredError
 
clone() - Method in class jsat.regression.evaluation.TotalHistoryRegressionScore
 
clone() - Method in class jsat.regression.KernelRidgeRegression
 
clone() - Method in class jsat.regression.KernelRLS
 
clone() - Method in class jsat.regression.LogisticRegression
 
clone() - Method in class jsat.regression.MultipleLinearRegression
 
clone() - Method in class jsat.regression.NadarayaWatson
 
clone() - Method in class jsat.regression.OrdinaryKriging
 
clone() - Method in class jsat.regression.OrdinaryKriging.PowVariogram
 
clone() - Method in interface jsat.regression.OrdinaryKriging.Variogram
 
clone() - Method in class jsat.regression.RANSAC
 
clone() - Method in interface jsat.regression.Regressor
 
clone() - Method in class jsat.regression.RidgeRegression
 
clone() - Method in class jsat.regression.StochasticGradientBoosting
 
clone() - Method in class jsat.regression.StochasticRidgeRegression
 
clone() - Method in interface jsat.regression.UpdateableRegressor
 
ClosedHashingUtil - Class in jsat.utils
This class provides some useful methods and utilities for implementing Closed Hashing structures
ClosedHashingUtil() - Constructor for class jsat.utils.ClosedHashingUtil
 
cluster(DataSet, boolean, int[], int[], List<Double>) - Method in class jsat.clustering.CLARA
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.CLARA
 
cluster(DataSet) - Method in interface jsat.clustering.Clusterer
Performs clustering on the given data set.
cluster(DataSet, int[]) - Method in interface jsat.clustering.Clusterer
Performs clustering on the given data set.
cluster(DataSet, ExecutorService) - Method in interface jsat.clustering.Clusterer
Performs clustering on the given data set.
cluster(DataSet, ExecutorService, int[]) - Method in interface jsat.clustering.Clusterer
Performs clustering on the given data set.
cluster(DataSet) - Method in class jsat.clustering.ClustererBase
 
cluster(DataSet, ExecutorService) - Method in class jsat.clustering.ClustererBase
 
cluster(DataSet, int) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, int[]) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, int, ExecutorService) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, double, int) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, double, int, int[]) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, double, int, ExecutorService) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, double, int, ExecutorService, int[]) - Method in class jsat.clustering.DBSCAN
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, int[]) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.EMGaussianMixture
 
cluster(DataSet, int[]) - Method in class jsat.clustering.FLAME
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.FLAME
 
cluster(DataSet, int[]) - Method in class jsat.clustering.GapStatistic
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.GapStatistic
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.GapStatistic
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.GapStatistic
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.GapStatistic
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.GapStatistic
 
cluster(DataSet, int[]) - Method in class jsat.clustering.HDBSCAN
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.HDBSCAN
 
cluster(DataSet, int[]) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
cluster(DataSet, int[]) - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
cluster(DataSet, int[]) - Method in class jsat.clustering.hierarchical.NNChainHAC
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.NNChainHAC
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.NNChainHAC
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.hierarchical.NNChainHAC
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.NNChainHAC
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.hierarchical.NNChainHAC
 
cluster(DataSet, int[]) - Method in class jsat.clustering.hierarchical.PriorityHAC
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.PriorityHAC
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.PriorityHAC
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.hierarchical.PriorityHAC
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.PriorityHAC
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.hierarchical.PriorityHAC
 
cluster(DataSet, int[]) - Method in class jsat.clustering.hierarchical.SimpleHAC
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.SimpleHAC
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.SimpleHAC
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.hierarchical.SimpleHAC
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.hierarchical.SimpleHAC
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.hierarchical.SimpleHAC
 
cluster(DataSet, int, ExecutorService) - Method in interface jsat.clustering.KClusterer
Performs clustering on the given data set.
cluster(DataSet, int, ExecutorService, int[]) - Method in interface jsat.clustering.KClusterer
 
cluster(DataSet, int) - Method in interface jsat.clustering.KClusterer
Performs clustering on the given data set.
cluster(DataSet, int, int[]) - Method in interface jsat.clustering.KClusterer
 
cluster(DataSet, int, int, ExecutorService) - Method in interface jsat.clustering.KClusterer
Performs clustering on the given data set.
cluster(DataSet, int, int, ExecutorService, int[]) - Method in interface jsat.clustering.KClusterer
 
cluster(DataSet, int, int) - Method in interface jsat.clustering.KClusterer
Performs clustering on the given data set.
cluster(DataSet, int, int, int[]) - Method in interface jsat.clustering.KClusterer
 
cluster(DataSet, int, ExecutorService) - Method in class jsat.clustering.KClustererBase
 
cluster(DataSet, int) - Method in class jsat.clustering.KClustererBase
 
cluster(DataSet, int, int, ExecutorService) - Method in class jsat.clustering.KClustererBase
 
cluster(DataSet, int, int) - Method in class jsat.clustering.KClustererBase
 
cluster(DataSet, int, int[], boolean, ExecutorService) - Method in class jsat.clustering.kmeans.ElkanKernelKMeans
This is a helper method where the actual cluster is performed.
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.ElkanKernelKMeans
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.kmeans.ElkanKernelKMeans
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.ElkanKMeans
 
cluster(DataSet, int[]) - Method in class jsat.clustering.kmeans.GMeans
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.GMeans
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.GMeans
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.kmeans.GMeans
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.GMeans
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.HamerlyKMeans
 
cluster(DataSet, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.KMeans
This is a helper method where the actual cluster is performed.
cluster(DataSet, int[]) - Method in class jsat.clustering.kmeans.KMeans
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KMeans
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KMeans
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.kmeans.KMeans
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KMeans
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.kmeans.KMeans
 
cluster(DataSet, int[]) - Method in class jsat.clustering.kmeans.KMeansPDN
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KMeansPDN
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.KMeansPDN
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.kmeans.KMeansPDN
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.KMeansPDN
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.LloydKernelKMeans
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.kmeans.LloydKernelKMeans
 
cluster(DataSet, int[]) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.NaiveKMeans
 
cluster(DataSet, int[]) - Method in class jsat.clustering.kmeans.XMeans
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.XMeans
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.kmeans.XMeans
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.kmeans.XMeans
 
cluster(DataSet, List<Double>, int, List<Vec>, int[], boolean, ExecutorService, boolean, Vec) - Method in class jsat.clustering.kmeans.XMeans
 
cluster(DataSet, int[]) - Method in class jsat.clustering.LSDBC
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.LSDBC
 
cluster(DataSet, int[]) - Method in class jsat.clustering.MeanShift
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.MeanShift
 
cluster(DataSet, int[]) - Method in class jsat.clustering.OPTICS
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.OPTICS
 
cluster(DataSet, boolean, int[], int[], List<Double>) - Method in class jsat.clustering.PAM
Performs the actual work of PAM.
cluster(DataSet, int[]) - Method in class jsat.clustering.PAM
 
cluster(DataSet, ExecutorService, int[]) - Method in class jsat.clustering.PAM
 
cluster(DataSet, int, ExecutorService, int[]) - Method in class jsat.clustering.PAM
 
cluster(DataSet, int, int[]) - Method in class jsat.clustering.PAM
 
cluster(DataSet, int, int, int[]) - Method in class jsat.clustering.PAM
 
cluster(DataSet, int, int, ExecutorService, int[]) - Method in class jsat.clustering.PAM
 
clusterCompute(int, DataSet, int[], List<Vec>, List<Matrix>, ExecutorService) - Method in class jsat.clustering.EMGaussianMixture
 
ClusterDissimilarity - Interface in jsat.clustering.dissimilarity
This interface provides the basic contract for measuring the dissimilarity between two clusters, and intended for use in Hierarchical Agglomerative Clustering.
Clusterer - Interface in jsat.clustering
Defines the interface for a generic clustering algorithm.
ClustererBase - Class in jsat.clustering
A base foundation that provides an implementation of ClustererBase.cluster(jsat.DataSet) and ClustererBase.cluster(jsat.DataSet, java.util.concurrent.ExecutorService) using their int array counterparts.
ClustererBase() - Constructor for class jsat.clustering.ClustererBase
 
ClusterEvaluation - Interface in jsat.clustering.evaluation
Provides the contract for evaluating the quality of a hard assignment of clustering a dataset.
ClusterEvaluationBase - Class in jsat.clustering.evaluation
Base implementation for one of the methods in ClusterEvaluation to make life easier.
ClusterEvaluationBase() - Constructor for class jsat.clustering.evaluation.ClusterEvaluationBase
 
ClusterFailureException - Exception in jsat.clustering
A ClusterFailureException is thrown when a clustering method is unable to perform its clustering for some reason.
ClusterFailureException() - Constructor for exception jsat.clustering.ClusterFailureException
 
ClusterFailureException(String) - Constructor for exception jsat.clustering.ClusterFailureException
 
ClusterFailureException(Throwable) - Constructor for exception jsat.clustering.ClusterFailureException
 
ClusterFailureException(String, Throwable) - Constructor for exception jsat.clustering.ClusterFailureException
 
clusterSplit(int) - Method in class jsat.clustering.hierarchical.DivisiveGlobalClusterer
Returns the clustering results for a specific k number of clusters for a previously computed data set.
cMul(double, double, double, double, double[]) - Static method in class jsat.math.Complex
Performs a complex multiplication
CMWC4096 - Class in jsat.utils.random
A Complement-Multiply-With-Carry PRNG.
CMWC4096() - Constructor for class jsat.utils.random.CMWC4096
Creates a new PRNG with a random seed
CMWC4096(long) - Constructor for class jsat.utils.random.CMWC4096
Creates a new PRNG
CoefficientOfDetermination - Class in jsat.regression.evaluation
Uses the Coefficient of Determination, also known as R2, is an evaluation score in [0,1].
CoefficientOfDetermination() - Constructor for class jsat.regression.evaluation.CoefficientOfDetermination
Creates a new Coefficient of Determination object
CoefficientOfDetermination(CoefficientOfDetermination) - Constructor for class jsat.regression.evaluation.CoefficientOfDetermination
Copy constructor
collectFutures(Collection<Future<T>>) - Static method in class jsat.utils.ListUtils
Collects all future values in a collection into a list, and returns said list.
cols() - Method in class jsat.linear.DenseMatrix
 
cols() - Method in class jsat.linear.Matrix
Returns the number of columns stored in this matrix
cols() - Method in class jsat.linear.MatrixOfVecs
 
cols() - Method in class jsat.linear.RandomMatrix
 
cols() - Method in class jsat.linear.SparseMatrix
 
cols() - Method in class jsat.linear.SubMatrix
 
cols() - Method in class jsat.linear.TransposeView
 
columnVecCache - Variable in class jsat.DataSet
This cache is used to hold a reference to the column vectors that are returned.
comineAllBut(List<ClassificationDataSet>, int) - Static method in class jsat.classifiers.ClassificationDataSet
A helper method meant to be used with DataSet.cvSet(int), this combines all classification data sets in a given list, but holding out the indicated list.
comineAllBut(List<RegressionDataSet>, int) - Static method in class jsat.regression.RegressionDataSet
 
comparator() - Method in class jsat.utils.IntSortedSet
 
compareAndSet(double, double) - Method in class jsat.utils.concurrent.AtomicDouble
 
compareAndSet(int, double, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically sets the element at position i to the given updated value if the current value == the expected value.
compareTo(VecPairedComparable<V, P>) - Method in class jsat.linear.VecPairedComparable
 
compareTo(ProbailityMatch) - Method in class jsat.utils.ProbailityMatch
 
CompleteLinkDissimilarity - Class in jsat.clustering.dissimilarity
Measures the dissimilarity of two clusters by returning the value of the maximal dissimilarity of any two pairs of data points where one is from each cluster.
CompleteLinkDissimilarity() - Constructor for class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
Creates a new CompleteLinkDissimilarity using the EuclideanDistance
CompleteLinkDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
Creates a new CompleteLinkDissimilarity
CompleteLinkDissimilarity(CompleteLinkDissimilarity) - Constructor for class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
Copy constructor
Complex - Class in jsat.math
A class for representing a complex value by a real and imaginary double pair.
Complex(double, double) - Constructor for class jsat.math.Complex
Creates a new Complex number
computeP(DataSet, ExecutorService, Random, int, int[][], double[][], DistanceMetric, double) - Static method in class jsat.datatransform.visualization.TSNE
 
ConcatenatedVec - Class in jsat.linear
ConcatenatedVec provides a light wrapper around a list of vectors to provide a view of one single vector that's length is the sum of the lengths of the inputs.
ConcatenatedVec(List<Vec>) - Constructor for class jsat.linear.ConcatenatedVec
Creates a new Vector that is the concatenation of the given vectors in the given order.
ConcatenatedVec(Vec...) - Constructor for class jsat.linear.ConcatenatedVec
Creates a new Vector that is the concatenation of the given vectors in the given order.
ConcurrentCacheLRU<K,V> - Class in jsat.utils.concurrent
This class defines a Concurrent LRU cache.
ConcurrentCacheLRU(int) - Constructor for class jsat.utils.concurrent.ConcurrentCacheLRU
 
ConditionalProbabilityTable - Class in jsat.classifiers.bayesian
The conditional probability table (CPT) is a classifier for categorical attributes.
ConditionalProbabilityTable() - Constructor for class jsat.classifiers.bayesian.ConditionalProbabilityTable
 
ConjugateGradient - Class in jsat.linear.solvers
Provides an iterative implementation of the COnjugate Gradient Method.
ConjugateGradient() - Constructor for class jsat.linear.solvers.ConjugateGradient
 
consolidate(RemoveAttributeTransform) - Method in class jsat.datatransform.RemoveAttributeTransform
A serious of Remove Attribute Transforms may be learned and applied sequentially to a single data set.
ConstantInit - Class in jsat.classifiers.neuralnetwork.initializers
This initializes all bias values to a single constant value
ConstantInit(double) - Constructor for class jsat.classifiers.neuralnetwork.initializers.ConstantInit
 
ConstantVector - Class in jsat.linear
This class provides a simple utility to represent an immutable vector where all values in the vector must have the same constant value.
ConstantVector(double, int) - Constructor for class jsat.linear.ConstantVector
Creates a new vector where all values have a single implicit value
contains(Object) - Method in class jsat.utils.IntPriorityQueue
 
contains(int) - Method in class jsat.utils.IntSet
 
contains(Object) - Method in class jsat.utils.IntSet
 
contains(Object) - Method in class jsat.utils.IntSetFixedSize
 
contains(int) - Method in class jsat.utils.IntSetFixedSize
Checks if the given value is contained in this set
contains(int) - Method in class jsat.utils.IntSortedSet
 
contains(Object) - Method in class jsat.utils.IntSortedSet
 
containsCategoricalData() - Method in class jsat.classifiers.DataPoint
Returns true if this data point contains any categorical variables, false otherwise.
containsKey(Object) - Method in class jsat.utils.IntDoubleMap
 
containsKey(int) - Method in class jsat.utils.IntDoubleMap
 
containsKey(Object) - Method in class jsat.utils.IntDoubleMapArray
 
containsKey(int) - Method in class jsat.utils.IntDoubleMapArray
 
containsKey(Object) - Method in class jsat.utils.LongDoubleMap
 
containsKey(long) - Method in class jsat.utils.LongDoubleMap
 
containsNode(N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Returns true if a is a node in the graph, or false otherwise.
containsNumericalData() - Method in class jsat.classifiers.DataPoint
Returns true if the data point contains any numerical variables, false otherwise.
ContinuedFraction - Class in jsat.math
This class provides a means to represent and evaluate continued fractions in a multitude of ways.
ContinuedFraction() - Constructor for class jsat.math.ContinuedFraction
 
ContinuousDistribution - Class in jsat.distributions
The ContinuousDistribution represents the contract for a continuous in one dimension.

Many of the functions of a Continuous Distribution are implemented by default using numerical calculation and integration.
ContinuousDistribution() - Constructor for class jsat.distributions.ContinuousDistribution
 
copyOf(CategoricalData[]) - Static method in class jsat.classifiers.CategoricalData
 
copyTo(Matrix) - Method in class jsat.linear.Matrix
Copes the values of this matrix into the other matrix of the same dimensions
copyTo(Vec) - Method in class jsat.linear.SparseVector
 
copyTo(Vec) - Method in class jsat.linear.Vec
Copies the values of this Vector into another vector
copyToCol(Matrix, int) - Method in class jsat.linear.Vec
Copies the values of this vector into a column of another Matrix.
copyToRow(Matrix, int) - Method in class jsat.linear.Vec
Copies the values of this vector into a row of another Matrix
correlation(Vec, Vec, boolean) - Static method in class jsat.linear.distancemetrics.PearsonDistance
Computes the Pearson correlation between two vectors.
CosineDistance - Class in jsat.linear.distancemetrics
The Cosine Distance is a adaption of the Cosine Similarity's range from [-1, 1] into the range [0, 1].
CosineDistance() - Constructor for class jsat.linear.distancemetrics.CosineDistance
 
CosineDistanceNormalized - Class in jsat.linear.distancemetrics
This distance metric returns the same cosine distance as CosineDistance.
CosineDistanceNormalized() - Constructor for class jsat.linear.distancemetrics.CosineDistanceNormalized
 
cosineToDistance(double) - Static method in class jsat.linear.distancemetrics.CosineDistance
This method converts the cosine distance in [-1, 1] to a valid distance metric in the range [0, 1]
coth(double) - Static method in class jsat.math.TrigMath
 
countDown() - Method in class jsat.utils.ModifiableCountDownLatch
Decrements the counter.
countMissingValues() - Method in class jsat.DataSet
 
countNaNs() - Method in class jsat.linear.Vec
 
counts - Variable in class jsat.classifiers.bayesian.ODE
First index is the number of target values
2nd index is the number of values for the dependent variable
3rd is the number of categorical variables, including the dependent one
4th is the count for the variable value
countUp() - Method in class jsat.utils.ModifiableCountDownLatch
Increments the count.
covarianceDiag(Vec, Vec, DataSet) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted diagonal of the covariance matrix, which is the standard deviations of the columns of all values.
covarianceDiag(Vec, DataSet) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted diagonal of the covariance matrix, which is the standard deviations of the columns of all values.
covarianceDiag(Vec, Vec, List<V>) - Static method in class jsat.linear.MatrixStatistics
Computes the diagonal of the covariance matrix, which is the standard deviations of the columns of all values.
covarianceDiag(Vec, List<V>) - Static method in class jsat.linear.MatrixStatistics
Computes the diagonal of the covariance matrix, which is the standard deviations of the columns of all values.
covarianceMatrix(Vec, List<V>) - Static method in class jsat.linear.MatrixStatistics
 
covarianceMatrix(Vec, Matrix, List<V>) - Static method in class jsat.linear.MatrixStatistics
 
covarianceMatrix(Vec, List<DataPoint>, Matrix) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted result for the covariance matrix of the given data set.
covarianceMatrix(Vec, List<DataPoint>, Matrix, double, double) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted result for the covariance matrix of the given data set.
covarianceMatrix(Vec, DataSet) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted covariance matrix of the data set
covarianceMatrix(Vec, DataSet, Matrix) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted covariance matrix of the given data set.
covarianceMatrix(Vec, DataSet, Matrix, double, double) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted covariance matrix of the given data set.
CoverTree<V extends Vec> - Class in jsat.linear.vectorcollection
This class implements the Cover-tree algorithm for answering nearest neighbor queries.
CoverTree(DistanceMetric) - Constructor for class jsat.linear.vectorcollection.CoverTree
 
CoverTree(List<V>, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.CoverTree
 
CoverTree(List<V>, DistanceMetric, ExecutorService) - Constructor for class jsat.linear.vectorcollection.CoverTree
 
CoverTree(List<V>, DistanceMetric, ExecutorService, boolean) - Constructor for class jsat.linear.vectorcollection.CoverTree
 
CoverTree(CoverTree<V>) - Constructor for class jsat.linear.vectorcollection.CoverTree
 
CoverTree.CoverTreeFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
CoverTreeFactory() - Constructor for class jsat.linear.vectorcollection.CoverTree.CoverTreeFactory
 
CPM - Class in jsat.classifiers.svm.extended
This class implements the Convex Polytope Machine (CPM), which is an extension of the Linear SVM.
CPM() - Constructor for class jsat.classifiers.svm.extended.CPM
Creates a new CPM classifier, with default parameters that should work well for most cases.
CPM(int) - Constructor for class jsat.classifiers.svm.extended.CPM
Creates a new CPM classifier
CPM(double) - Constructor for class jsat.classifiers.svm.extended.CPM
Creates a new CPM classifier
CPM(double, int) - Constructor for class jsat.classifiers.svm.extended.CPM
Creates a new CPM classifier
CPM(double, int, double) - Constructor for class jsat.classifiers.svm.extended.CPM
Creates a new CPM classifier
CPM(double, int, double, int) - Constructor for class jsat.classifiers.svm.extended.CPM
Creates a new CPM classifier
CPM(CPM) - Constructor for class jsat.classifiers.svm.extended.CPM
Copy constructor
cpts - Variable in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
The Conditional probability tables for each variable
createClusterListFromAssignmentArray(int[], DataSet) - Static method in class jsat.clustering.ClustererBase
Convenient helper method.
createDistanceMatrix(DataSet, ClusterDissimilarity) - Static method in class jsat.clustering.dissimilarity.AbstractClusterDissimilarity
Creates an upper triangular matrix containing the distance between all points in the data set.
csch(double) - Static method in class jsat.math.TrigMath
 
CSKLR - Class in jsat.classifiers.linear.kernelized
An implementation of Conservative Stochastic Kernel Logistic Regression.
CSKLR(double, KernelTrick, double, CSKLR.UpdateMode) - Constructor for class jsat.classifiers.linear.kernelized.CSKLR
Creates a new CSKLR object
CSKLR(CSKLR) - Constructor for class jsat.classifiers.linear.kernelized.CSKLR
Copy constructor
CSKLR.UpdateMode - Enum in jsat.classifiers.linear.kernelized
Controls when updates are performed on the model.
CSKLRBatch - Class in jsat.classifiers.linear.kernelized
An implementation of Conservative Stochastic Kernel Logistic Regression.
CSKLRBatch(double, KernelTrick, double, CSKLR.UpdateMode, SupportVectorLearner.CacheMode) - Constructor for class jsat.classifiers.linear.kernelized.CSKLRBatch
Creates a new SCKLR Batch learning object
CSKLRBatch(CSKLRBatch) - Constructor for class jsat.classifiers.linear.kernelized.CSKLRBatch
Copy constructor
CSV - Class in jsat.io
Provides a reader and writer for CSV style datasets.
cutOff() - Method in class jsat.distributions.empirical.kernelfunc.BiweightKF
 
cutOff() - Method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
 
cutOff() - Method in class jsat.distributions.empirical.kernelfunc.GaussKF
 
cutOff() - Method in interface jsat.distributions.empirical.kernelfunc.KernelFunction
As the value of |u| for the kernel function approaches infinity, the value of k(u) approaches zero.
cutOff() - Method in class jsat.distributions.empirical.kernelfunc.TriweightKF
 
cutOff() - Method in class jsat.distributions.empirical.kernelfunc.UniformKF
 
cvSet(int, Random) - Method in class jsat.DataSet
Creates folds data sets that contain data from this data set.
cvSet(int) - Method in class jsat.DataSet
Creates folds data sets that contain data from this data set.

D

d - Variable in class jsat.distributions.kernels.DistanceMetricBasedKernel
the distance metric to use for the Kernel
dag - Variable in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
The directed Graph that represents this BN
DANN - Class in jsat.classifiers.knn
DANN is an implementation of Discriminant Adaptive Nearest Neighbor.
DANN() - Constructor for class jsat.classifiers.knn.DANN
Creates a new DANN classifier
DANN(int, int) - Constructor for class jsat.classifiers.knn.DANN
Creates a new DANN classifier
DANN(int, int, double) - Constructor for class jsat.classifiers.knn.DANN
Creates a new DANN classifier
DANN(int, int, double, VectorCollectionFactory<VecPaired<Vec, Integer>>) - Constructor for class jsat.classifiers.knn.DANN
Creates a new DANN classifier
DANN(int, int, double, int, VectorCollectionFactory<VecPaired<Vec, Integer>>) - Constructor for class jsat.classifiers.knn.DANN
Creates a new DANN classifier
DataModelPipeline - Class in jsat.datatransform
A Data Model Pipeline combines several data transforms and a base Classifier or Regressor into a unified object for performing classification and Regression with.
DataModelPipeline(Classifier, DataTransformProcess) - Constructor for class jsat.datatransform.DataModelPipeline
Creates a new Data Model Pipeline from the given transform process and base classifier
DataModelPipeline(Classifier, DataTransform...) - Constructor for class jsat.datatransform.DataModelPipeline
Creates a new Data Model Pipeline from the given transform factories and base classifier
DataModelPipeline(Regressor, DataTransformProcess) - Constructor for class jsat.datatransform.DataModelPipeline
Creates a new Data Model Pipeline from the given transform process and base regressor
DataModelPipeline(Regressor, DataTransform...) - Constructor for class jsat.datatransform.DataModelPipeline
Creates a new Data Model Pipeline from the given transform factories and base classifier
DataModelPipeline(DataModelPipeline) - Constructor for class jsat.datatransform.DataModelPipeline
Copy constructor
DataPoint - Class in jsat.classifiers
This is the general class object for representing a singular data point in a data set.
DataPoint(Vec, int[], CategoricalData[]) - Constructor for class jsat.classifiers.DataPoint
Creates a new data point with the default weight of 1.0
DataPoint(Vec, int[], CategoricalData[], double) - Constructor for class jsat.classifiers.DataPoint
Creates a new data point
DataPoint(Vec, double) - Constructor for class jsat.classifiers.DataPoint
Creates a new data point that has no categorical variables
DataPoint(Vec) - Constructor for class jsat.classifiers.DataPoint
Creates a new data point that has no categorical variables and a weight of 1.0
DataPointPair<P> - Class in jsat.classifiers
This class exists so that any data point can be arbitrarily paired with some value
DataPointPair(DataPoint, P) - Constructor for class jsat.classifiers.DataPointPair
 
datapoints - Variable in class jsat.classifiers.ClassificationDataSet
 
dataPoints - Variable in class jsat.regression.RegressionDataSet
The list of all data points, paired with their true regression output
dataPoints - Variable in class jsat.SimpleDataSet
 
dataPointToCord(DataPointPair<Integer>, int, int[]) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
Converts a data point pair into a coordinate.
DataSet<Type extends DataSet> - Class in jsat
This is the base class for representing a data set.
DataSet() - Constructor for class jsat.DataSet
 
DataTransform - Interface in jsat.datatransform
A pre-processing step may be desirable before training.
DataTransformBase - Class in jsat.datatransform
This abstract class implements the Parameterized interface to ease the development of simple Data Transforms.
DataTransformBase() - Constructor for class jsat.datatransform.DataTransformBase
 
DataTransformProcess - Class in jsat.datatransform
Performing a transform on the whole data set before training a classifier can add bias to the results.
DataTransformProcess() - Constructor for class jsat.datatransform.DataTransformProcess
Creates a new transform process that is empty.
DataTransformProcess(DataTransform...) - Constructor for class jsat.datatransform.DataTransformProcess
Creates a new transform process from the listed factories, which will be applied in order by index.
DaviesBouldinIndex - Class in jsat.clustering.evaluation
A measure for evaluating the quality of a clustering by measuring the distances of points to their centroids.
DaviesBouldinIndex() - Constructor for class jsat.clustering.evaluation.DaviesBouldinIndex
Creates a new DaviesBouldinIndex using the EuclideanDistance.
DaviesBouldinIndex(DaviesBouldinIndex) - Constructor for class jsat.clustering.evaluation.DaviesBouldinIndex
Copy constructor
DaviesBouldinIndex(DistanceMetric) - Constructor for class jsat.clustering.evaluation.DaviesBouldinIndex
Creates a new DaviesBouldinIndex
DBSCAN - Class in jsat.clustering
A density-based algorithm for discovering clusters in large spatial databases with noise (1996) by Martin Ester , Hans-peter Kriegel , Jörg S , Xiaowei Xu
DBSCAN(DistanceMetric, VectorCollectionFactory<VecPaired<Vec, Integer>>) - Constructor for class jsat.clustering.DBSCAN
 
DBSCAN() - Constructor for class jsat.clustering.DBSCAN
 
DBSCAN(DistanceMetric) - Constructor for class jsat.clustering.DBSCAN
 
DBSCAN(DBSCAN) - Constructor for class jsat.clustering.DBSCAN
Copy constructor
dCalc(ContinuousDistribution) - Method in class jsat.testing.goodnessoffit.KSTest
Calculates the D statistic for comparison against a continous distribution
dCaldO(Vec) - Method in class jsat.testing.goodnessoffit.KSTest
Calculates the D statistic for comparison against another data set
DCD - Class in jsat.classifiers.svm
Implements Dual Coordinate Descent (DCD) training algorithms for a Linear L1 or L2 Support Vector Machine for binary classification and regression.
DCD() - Constructor for class jsat.classifiers.svm.DCD
Creates a new DCDL2 SVM object
DCD(int, boolean) - Constructor for class jsat.classifiers.svm.DCD
Creates a new DCD SVM object.
DCD(int, double, boolean) - Constructor for class jsat.classifiers.svm.DCD
Creates a new DCD SVM object
DCDs - Class in jsat.classifiers.svm
Implements Dual Coordinate Descent with shrinking (DCDs) training algorithms for a Linear L1 or L2 Support Vector Machine for binary classification and regression.
DCDs() - Constructor for class jsat.classifiers.svm.DCDs
Creates a new DCDL2 SVM object
DCDs(int, boolean) - Constructor for class jsat.classifiers.svm.DCDs
Creates a new DCD SVM object
DCDs(int, double, double, boolean) - Constructor for class jsat.classifiers.svm.DCDs
Creates a new DCD SVM object
DCSVM - Class in jsat.classifiers.svm
This is an implementation of the Divide-and-Conquer Support Vector Machine (DC-SVM).
DCSVM(KernelTrick) - Constructor for class jsat.classifiers.svm.DCSVM
Creates a new DC-SVM for the given kernel
DCSVM() - Constructor for class jsat.classifiers.svm.DCSVM
Creates a new DC-SVM for the RBF kernel
DCSVM(DCSVM) - Constructor for class jsat.classifiers.svm.DCSVM
Copy Constructor
DDAG - Class in jsat.classifiers
Decision Directed Acyclic Graph (DDAG) classifier.
DDAG(Classifier, boolean) - Constructor for class jsat.classifiers.DDAG
Creates a new DDAG classifier to extend a binary classifier to handle multi-class problems.
DDAG(Classifier) - Constructor for class jsat.classifiers.DDAG
Creates a new DDAG classifier to extend a binary classifier to handle multi-class problems.
DDM<V> - Class in jsat.driftdetectors
DDM (Drift Detection Method) is a drift detector for binary events, and is meant to detect decreases in the success rate over time.
DDM() - Constructor for class jsat.driftdetectors.DDM
Creates a new DDM drift detector using the default warning and drift thresholds of 2 and 3 respectively.
DDM(double, double) - Constructor for class jsat.driftdetectors.DDM
Creates a new DDM drift detector
DDM(DDM<V>) - Constructor for class jsat.driftdetectors.DDM
Copy constructor
DecayRate - Interface in jsat.math.decayrates
Many algorithms use a learning rate to adjust the step size by which the search space is covered.
DecayRateParameter - Class in jsat.parameters
A parameter for changing between the default decay rates.
DecayRateParameter() - Constructor for class jsat.parameters.DecayRateParameter
 
decisionFunction(int) - Method in class jsat.classifiers.svm.PlattSMO
Returns the local decision function for classification training purposes without the bias term
decisionFunctionR(int) - Method in class jsat.classifiers.svm.PlattSMO
Returns the local decision function for regression training purposes without the bias term
DecisionStump - Class in jsat.classifiers.trees
This class is a 1-rule.
DecisionStump() - Constructor for class jsat.classifiers.trees.DecisionStump
Creates a new decision stump
DecisionTree - Class in jsat.classifiers.trees
Creates a decision tree from DecisionStumps.
DecisionTree() - Constructor for class jsat.classifiers.trees.DecisionTree
Creates a Decision Tree that uses TreePruner.PruningMethod.REDUCED_ERROR pruning on a held out 10% of the data.
DecisionTree(int) - Constructor for class jsat.classifiers.trees.DecisionTree
Creates a Decision Tree that does not do any pruning, and is built out only to the specified depth
DecisionTree(int, int, TreePruner.PruningMethod, double) - Constructor for class jsat.classifiers.trees.DecisionTree
Creates a new decision tree classifier
DecisionTree(DecisionTree) - Constructor for class jsat.classifiers.trees.DecisionTree
Copy constructor
DecisionTree.Node - Class in jsat.classifiers.trees
 
decreaseKey(FibHeap.FibNode<T>, double) - Method in class jsat.utils.FibHeap
 
deepCopy() - Method in class jsat.linear.DenseVector
 
DEFAULT_ALPHA - Static variable in class jsat.clustering.LSDBC
4.0 is the default scale value used when performing clustering.
DEFAULT_ALPHA - Static variable in class jsat.math.optimization.stochastic.Adam
 
DEFAULT_BATCH_SIZE - Static variable in class jsat.classifiers.svm.Pegasos
The default batch size is 1
DEFAULT_BETA_1 - Static variable in class jsat.math.optimization.stochastic.Adam
 
DEFAULT_BETA_2 - Static variable in class jsat.math.optimization.stochastic.Adam
 
DEFAULT_CLASS_BUDGET - Static variable in class jsat.classifiers.svm.extended.OnlineAMM
The default class budget is 50.
DEFAULT_COMMENT - Static variable in class jsat.io.CSV
 
DEFAULT_DELIMITER - Static variable in class jsat.io.CSV
 
DEFAULT_EPOCHS - Static variable in class jsat.classifiers.linear.StochasticSTLinearL1
 
DEFAULT_EPOCHS - Static variable in class jsat.classifiers.svm.Pegasos
The default number of epochs is 5
DEFAULT_EPS - Static variable in class jsat.classifiers.knn.DANN
The default regularization used when building a metric is 1.0
DEFAULT_EPS - Static variable in class jsat.classifiers.linear.NewGLMNET
The default tolerance for training is 0.01.
DEFAULT_EPS - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default eps distance factor between the two wining vectors 0.3
DEFAULT_EPS - Static variable in class jsat.math.optimization.stochastic.Adam
 
DEFAULT_ERROR - Static variable in class jsat.regression.OrdinaryKriging
The default error value is OrdinaryKriging.DEFAULT_ERROR
DEFAULT_EXTRA_SAMPLES - Static variable in class jsat.classifiers.boosting.Bagging
The number of extra samples to take when bagging in each round used by default in the constructor: 0
DEFAULT_EXTRACTION_METHOD - Static variable in class jsat.clustering.OPTICS
The default method used to extract clusters in OPTICS
DEFAULT_FOLDS - Static variable in class jsat.classifiers.boosting.Stacking
 
DEFAULT_ITERATIONS - Static variable in class jsat.classifiers.knn.DANN
The default number of iterations for creating the metric is 1
DEFAULT_ITERATIONS - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default number of iterations is 200
DEFAULT_K - Static variable in class jsat.classifiers.knn.DANN
The default number of neighbors to use when classifying is 1
DEFAULT_K - Static variable in class jsat.distributions.multivariate.MetricKDE
When estimating the bandwidth, the distances of the k'th nearest neighbors are used to perform the estimate.
DEFAULT_KF - Static variable in class jsat.classifiers.neuralnetwork.SOM
 
DEFAULT_KF - Static variable in class jsat.distributions.multivariate.MetricKDE
When estimating the bandwidth, the distances of the k'th nearest neighbors are used to perform the estimate.
DEFAULT_KN - Static variable in class jsat.classifiers.knn.DANN
The default number of neighbors to use when building a metric is 40.
DEFAULT_LAMBDA - Static variable in class jsat.math.optimization.stochastic.Adam
 
DEFAULT_LEARNING_DECAY - Static variable in class jsat.classifiers.neuralnetwork.SOM
 
DEFAULT_LEARNING_RATE - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default learning rate 0.1
DEFAULT_LEARNING_RATE - Static variable in class jsat.classifiers.neuralnetwork.SOM
 
DEFAULT_LEARNING_RATE - Static variable in class jsat.regression.StochasticGradientBoosting
DEFAULT_LOSS - Static variable in class jsat.classifiers.linear.StochasticSTLinearL1
 
DEFAULT_LVQ_METHOD - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default method of LVQ to use LVQ3
DEFAULT_MAX_ITERS - Static variable in class jsat.classifiers.neuralnetwork.SOM
 
DEFAULT_MAX_OUTER_ITER - Static variable in class jsat.classifiers.linear.NewGLMNET
The default number of outer iterations of the training algorithm is 100 .
DEFAULT_MIN_POINTS - Static variable in class jsat.clustering.OPTICS
The default number of points to consider is 10.
DEFAULT_MSCALE - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default scaling factor for the LVQ.LVQVersion.LVQ3 case is 0.30000000000000004
DEFAULT_NEIGHBOR_DECAY - Static variable in class jsat.classifiers.neuralnetwork.SOM
 
DEFAULT_NEIGHBORS - Static variable in class jsat.clustering.LSDBC
15 is the default number of neighbors used when performing clustering
DEFAULT_NUGGET - Static variable in class jsat.regression.OrdinaryKriging
The default nugget value is 0.1
DEFAULT_PRUNE_CONSTANT - Static variable in class jsat.classifiers.svm.extended.OnlineAMM
The default pruning constant is 10.0.
DEFAULT_PRUNE_FREQUENCY - Static variable in class jsat.classifiers.svm.extended.OnlineAMM
The default frequency for pruning is 10000.
DEFAULT_REG - Static variable in class jsat.classifiers.linear.StochasticSTLinearL1
 
DEFAULT_REG - Static variable in class jsat.classifiers.svm.Pegasos
The default regularization value is 1.0E-4
DEFAULT_REGULARIZER - Static variable in class jsat.classifiers.svm.extended.OnlineAMM
The default regularization value is 0.01.
DEFAULT_REPS_PER_CLASS - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default number of representatives per class is 3
DEFAULT_ROUNDS - Static variable in class jsat.classifiers.boosting.Bagging
The number of rounds of bagging that will be used by default in the constructor: 20
DEFAULT_SEED - Static variable in class jsat.utils.random.RandomUtil
If not specified, this will be the seed used for random objects used internally within JSAT.

You may change this to any desired value at the start of any experiments to consistently get new experimental results.
DEFAULT_SEED_SELECTION - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default seed selection method is SeedSelection.KPP
DEFAULT_SEED_SELECTION - Static variable in class jsat.clustering.kmeans.KMeans
This is the default seed selection method used in ElkanKMeans.
DEFAULT_SIMULTANIOUS_TRAINING - Static variable in class jsat.classifiers.boosting.Bagging
The default behavior for parallel training, as specified by Bagging.setSimultaniousTraining(boolean) is true
DEFAULT_STND_DEV - Static variable in class jsat.distributions.multivariate.MetricKDE
When estimating the bandwidth, the distances of the k'th nearest neighbors are used to perform the estimate.
DEFAULT_STOPPING_DIST - Static variable in class jsat.classifiers.neuralnetwork.LVQ
The default stopping distance for convergence is 0.001
DEFAULT_TRAINING_PROPORTION - Static variable in class jsat.regression.StochasticGradientBoosting
The default value for the training proportion is 0.5.
DEFAULT_USE_PRIORS - Static variable in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
Whether or not the classifier should take into account the prior probabilities.
DEFAULT_XI - Static variable in class jsat.clustering.OPTICS
The default value for xi is 0.005
defaultHandling - Static variable in class jsat.classifiers.bayesian.NaiveBayes
The default method of handling numeric attributes is NaiveBayes.NumericalHandeling.NORMAL.
DefaultMaxIterations - Static variable in class jsat.clustering.MeanShift
The default number of MeanShift.getMaxIterations() is 1000
DefaultScaleBandwidthFactor - Static variable in class jsat.clustering.MeanShift
The default value of MeanShift.getScaleBandwidthFactor() is 1.0
DefaultVectorCollectionFactory<V extends Vec> - Class in jsat.linear.vectorcollection
DefaultVectorCollectionFactory is a generic factory that attempts to return a good vector collection for the given input.
DefaultVectorCollectionFactory() - Constructor for class jsat.linear.vectorcollection.DefaultVectorCollectionFactory
 
DELETED - Static variable in class jsat.utils.ClosedHashingUtil
This value indicates that the status of an open addressing space is DELETED, meaning i should not stop a search for a value - but the code is free to overwrite the values at this location and change the status to ClosedHashingUtil.OCCUPIED.
delta - Static variable in class jsat.text.GreekLetters
 
DenseMatrix - Class in jsat.linear
 
DenseMatrix(Vec, Vec) - Constructor for class jsat.linear.DenseMatrix
Creates a new matrix based off the given vectors.
DenseMatrix(int, int) - Constructor for class jsat.linear.DenseMatrix
Creates a new matrix of zeros
DenseMatrix(double[][]) - Constructor for class jsat.linear.DenseMatrix
Creates a new matrix that is a clone of the given matrix.
DenseMatrix(Matrix) - Constructor for class jsat.linear.DenseMatrix
Creates a new dense matrix that has a copy of all the same values as the given one
DenseSparceTransform - Class in jsat.datatransform
Dense sparce transform alters the vectors that store the numerical values.
DenseSparceTransform(double) - Constructor for class jsat.datatransform.DenseSparceTransform
Creates a new Dense Sparce Transform.
DenseSparseMetric - Interface in jsat.linear.distancemetrics
Many algorithms require computing the distances from a small set of points to many other points.
DenseVector - Class in jsat.linear
A vector implementation that is dense, meaning all values are allocated - even if their values will be implicitly zero.
DenseVector(int) - Constructor for class jsat.linear.DenseVector
Creates a new Dense Vector of zeros
DenseVector(List<Double>) - Constructor for class jsat.linear.DenseVector
Creates a new vector of the length of the given list, and values copied over in order.
DenseVector(double[]) - Constructor for class jsat.linear.DenseVector
Creates a new Dense Vector that uses the given array as its values.
DenseVector(double[], int, int) - Constructor for class jsat.linear.DenseVector
Creates a new Dense Vector that uses the given array as its values.
DenseVector(Vec) - Constructor for class jsat.linear.DenseVector
Creates a new Dense Vector that contains a copy of the values in the given vector
dependent - Variable in class jsat.classifiers.bayesian.ODE
The attribute we will be dependent on
depends(int, int) - Method in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
Adds a dependency relation ship between two variables that will be in the network.
depTargets - Variable in class jsat.classifiers.bayesian.ODE
The number of possible values for the dependent variable
deriv(double, double) - Method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
Returns the value of the derivative of the loss function
deriv(double, double) - Static method in class jsat.lossfunctions.AbsoluteLoss
Returns the derivative of the absolute loss
deriv(double, double, double) - Static method in class jsat.lossfunctions.EpsilonInsensitiveLoss
Computes the first derivative of the ε-insensitive loss
deriv(double, double) - Static method in class jsat.lossfunctions.HingeLoss
Computes the first derivative of the HingeLoss loss
deriv(Vec, Vec, int) - Method in class jsat.lossfunctions.HingeLoss
 
deriv(double, double, double) - Static method in class jsat.lossfunctions.HuberLoss
Computes the first derivative of the HuberLoss loss
deriv(double, double) - Static method in class jsat.lossfunctions.LogisticLoss
Computes the first derivative of the logistic loss
deriv(Vec, Vec, int) - Method in interface jsat.lossfunctions.LossMC
Computes the derivatives with respect to each output
processed and derivs may be the same object, and will simply have all its values altered if so.
deriv(Vec, Vec, int) - Method in class jsat.lossfunctions.SoftmaxLoss
 
deriv(double, double) - Static method in class jsat.lossfunctions.SquaredLoss
Computes the first derivative of the squared loss
deriv1(double) - Method in enum jsat.datatransform.FastICA.DefaultNegEntropyFunc
 
deriv1(double) - Method in interface jsat.datatransform.FastICA.NegEntropyFunc
 
deriv2(double, double) - Method in enum jsat.datatransform.FastICA.DefaultNegEntropyFunc
 
deriv2(double, double) - Method in interface jsat.datatransform.FastICA.NegEntropyFunc
 
deriv2(double, double, double) - Static method in class jsat.lossfunctions.HuberLoss
Computes the second derivative of the HuberLoss loss, which only exists for values < c
deriv2(double, double) - Static method in class jsat.lossfunctions.LogisticLoss
Computes the second derivative of the logistic loss
deriv2(double, double) - Static method in class jsat.lossfunctions.SquaredLoss
Computes the second derivative of the squared loss, which is always 1
DescriptiveStatistics - Class in jsat.math
 
DescriptiveStatistics() - Constructor for class jsat.math.DescriptiveStatistics
 
det() - Method in class jsat.linear.LUPDecomposition
 
diag(Vec) - Static method in class jsat.linear.Matrix
Returns a new dense square matrix such that the main diagonal contains the values given in a
diagMult(Matrix, Vec) - Static method in class jsat.linear.Matrix
Alters the matrix A so that it contains the result of A times a sparse matrix represented by only its diagonal values or A = A*diag(b).
diagMult(Vec, Matrix) - Static method in class jsat.linear.Matrix
Alters the matrix A so that it contains the result of sparse matrix represented by only its diagonal values times A or A = diag(b)*A.
digamma(double) - Static method in class jsat.math.FastMath
Computes the digamma function of the input
digamma(double) - Static method in class jsat.math.SpecialMath
Computes the value of the digamma function, Ψ(x), which is the derivative of SpecialMath.lnGamma(double).
dimensions - Variable in class jsat.datatransform.WhitenedPCA
The number of dimensions to project down to
DirectedGraph<N> - Class in jsat.classifiers.bayesian.graphicalmodel
Provides a class representing an undirected graph.
DirectedGraph() - Constructor for class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
 
Dirichlet - Class in jsat.distributions.multivariate
An implementation of the Dirichlet distribution.
Dirichlet(Vec) - Constructor for class jsat.distributions.multivariate.Dirichlet
Creates a new Dirichlet distribution.
disablePath(int) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
disablePath(int) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Disables the selected path to the specified child from the current node.
DiscreteBayesNetwork - Class in jsat.classifiers.bayesian.graphicalmodel
A class for representing a Baysian Network (BN) for discrete variables.
DiscreteBayesNetwork() - Constructor for class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
 
DiscreteDistribution - Class in jsat.distributions.discrete
This abstract class defines the contract for a distribution over the integer values.

The DiscreteDistribution.cdf(double) method will behave by rounding down and then calling the integer DiscreteDistribution.cdf(int) counterpart.
DiscreteDistribution() - Constructor for class jsat.distributions.discrete.DiscreteDistribution
 
dissimilarity(List<DataPoint>, List<DataPoint>) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
dissimilarity(Set<Integer>, Set<Integer>, double[][]) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
dissimilarity(int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
dissimilarity(int, int, int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.AverageLinkDissimilarity
 
dissimilarity(List<DataPoint>, List<DataPoint>) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
dissimilarity(Set<Integer>, Set<Integer>, double[][]) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
dissimilarity(int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
dissimilarity(int, int, int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.CentroidDissimilarity
 
dissimilarity(List<DataPoint>, List<DataPoint>) - Method in interface jsat.clustering.dissimilarity.ClusterDissimilarity
Provides the notion of dissimilarity between two sets of points, that may not have the same number of points.
dissimilarity(Set<Integer>, Set<Integer>, double[][]) - Method in interface jsat.clustering.dissimilarity.ClusterDissimilarity
Provides the notion of dissimilarity between two sets of points, that may not have the same number of points.
dissimilarity(List<DataPoint>, List<DataPoint>) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
dissimilarity(Set<Integer>, Set<Integer>, double[][]) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
dissimilarity(int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
dissimilarity(int, int, int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
dissimilarity(int, int, int, double, double, double) - Method in class jsat.clustering.dissimilarity.CompleteLinkDissimilarity
 
dissimilarity(List<DataPoint>, List<DataPoint>) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
 
dissimilarity(Set<Integer>, Set<Integer>, double[][]) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
 
dissimilarity(int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
 
dissimilarity(int, int, int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
 
dissimilarity(int, int, int, double, double, double) - Method in class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
Provides the notion of dissimilarity between two sets of points, that may not have the same number of points.
dissimilarity(List<DataPoint>, List<DataPoint>) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
dissimilarity(Set<Integer>, Set<Integer>, double[][]) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
dissimilarity(int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
dissimilarity(int, int, int, int, int, int, double[][]) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
dissimilarity(int, int, int, double, double, double) - Method in class jsat.clustering.dissimilarity.SingleLinkDissimilarity
 
dissimilarity(int, int, int, int, double[][]) - Method in interface jsat.clustering.dissimilarity.UpdatableClusterDissimilarity
Provides the notion of dissimilarity between two sets of points, that may not have the same number of points.
dissimilarity(int, int, int, int, int, int, double[][]) - Method in interface jsat.clustering.dissimilarity.UpdatableClusterDissimilarity
Provides the notion of dissimilarity between two sets of points, that may not have the same number of points.
dist(Vec) - Method in class jsat.distributions.kernels.KernelPoint
Computes the Euclidean distance between this kernel point and the given input in the kernel space
dist(Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoint
Computes the Euclidean distance between this kernel point and the given input in the kernel space
dist(KernelPoint) - Method in class jsat.distributions.kernels.KernelPoint
Computes the Euclidean distance between this kernel point and the given kernel point in the kernel space
dist(int, Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoints
Computes the Euclidean distance in the kernel space between the k'th KernelPoint and the given vector
dist(int, KernelPoint) - Method in class jsat.distributions.kernels.KernelPoints
Computes the Euclidean distance in the kernel space between the k'th KernelPoint and the given KernelPoint
dist(int, KernelPoints, int) - Method in class jsat.distributions.kernels.KernelPoints
Computes the Euclidean distance in the kernel space between the k'th KernelPoint and the j'th KernelPoint in the given set
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.CosineDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.CosineDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.CosineDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.CosineDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
dist(double, Vec, Vec) - Method in interface jsat.linear.distancemetrics.DenseSparseMetric
Efficiently computes the distance from one main vector that is used many times, to some sparse target vector.
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
dist(Vec, Vec) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Computes the distance between 2 vectors.
dist(int, int, List<? extends Vec>, List<Double>) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Computes the distance between 2 vectors in the original list of vectors.
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Computes the distance between one vector in the original list of vectors with that of another vector not from the original list.
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Computes the distance between one vector in the original list of vectors with that of another vector not from the original list, but had information generated by DistanceMetric.getQueryInfo(jsat.linear.Vec).
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
dist(double, Vec, Vec) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.KernelDistance
Returns the square of the distance function expanded as kernel methods.
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.KernelDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.KernelDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.KernelDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
dist(double, Vec, Vec) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
dist(double, Vec, Vec) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
dist(Vec, Vec) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
dist(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
dist(int, Vec, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
dist(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
distance(DataPoint, DataPoint) - Method in interface jsat.clustering.dissimilarity.ClusterDissimilarity
Provides the notion of distance, or dissimilarity, between two data points
distance(DataPoint, DataPoint) - Method in class jsat.clustering.dissimilarity.DistanceMetricDissimilarity
 
distance(int, int, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
Computes the distance between one data point and a specified mean
distance(Vec, int) - Method in class jsat.clustering.kmeans.KernelKMeans
Returns the distance between the given data point and the the specified cluster
distance(Vec, List<Double>, int) - Method in class jsat.clustering.kmeans.KernelKMeans
Returns the distance between the given data point and the the specified cluster
DistanceCounter - Class in jsat.linear.distancemetrics
This class exists primarily as a sanity/benchmarking utility.
DistanceCounter(DistanceMetric) - Constructor for class jsat.linear.distancemetrics.DistanceCounter
Creates a new distance counter to wrap the given base metric
DistanceCounter(DistanceCounter) - Constructor for class jsat.linear.distancemetrics.DistanceCounter
Copies the given distance counter, while sharing the same underlying counter between the original and this new object.
DistanceMetric - Interface in jsat.linear.distancemetrics
A distance metric defines the distance between two points in a metric space.
DistanceMetricBasedKernel - Class in jsat.distributions.kernels
This abstract class provides the means of implementing a Kernel based off some DistanceMetric.
DistanceMetricBasedKernel(DistanceMetric) - Constructor for class jsat.distributions.kernels.DistanceMetricBasedKernel
Creates a new distance based kerenel
DistanceMetricDissimilarity - Class in jsat.clustering.dissimilarity
A base class for Dissimilarity measures that are build ontop the use of some distance metric.
DistanceMetricDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.DistanceMetricDissimilarity
 
distanceToCosine(double) - Static method in class jsat.linear.distancemetrics.CosineDistance
This method converts the distance obtained with CosineDistance.cosineToDistance(double) back into the cosine angle
Distribution - Class in jsat.distributions
Base distribution class for distributions that have only one input.
Distribution() - Constructor for class jsat.distributions.Distribution
 
DistributionSearch - Class in jsat.distributions
Provides methods for selecting the distribution that best fits a given data set.
DistributionSearch() - Constructor for class jsat.distributions.DistributionSearch
 
distributMissing(List<List<DataPointPair<T>>>, List<DataPointPair<T>>) - Static method in class jsat.classifiers.trees.DecisionStump
Distributes a list of datapoints that had missing values to each split, re-weighted by the indicated fractions
distributMissing(List<List<DataPointPair<T>>>, double[], List<DataPointPair<T>>) - Static method in class jsat.classifiers.trees.DecisionStump
Distributes a list of datapoints that had missing values to each split, re-weighted by the indicated fractions
divCol(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c
divCol(Matrix, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c
divCol(Matrix, int, int, int, Vec) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c[j].
The Matrix A and vector c do not need to have the same dimensions, so long as they both have indices in the given range.
divCol(Matrix, int, int, int, double[]) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c[j].
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range.
divide(double) - Method in class jsat.linear.Vec
Returns a new vector that is the result of this / c
divide(double) - Method in class jsat.linear.VecPaired
 
divide(Complex) - Method in class jsat.math.Complex
Creates a new complex number containing the resulting division of this by another
divideConst(double) - Method in class jsat.classifiers.CategoricalResults
Divides all the probabilities by a constant value in order to scale them
DivisiveGlobalClusterer - Class in jsat.clustering.hierarchical
DivisiveGlobalClusterer is a hierarchical clustering method that works by splitting the data set into sub trees from the top down.
DivisiveGlobalClusterer(KClusterer, ClusterEvaluation) - Constructor for class jsat.clustering.hierarchical.DivisiveGlobalClusterer
 
DivisiveGlobalClusterer(DivisiveGlobalClusterer) - Constructor for class jsat.clustering.hierarchical.DivisiveGlobalClusterer
Copy constructor
DivisiveLocalClusterer - Class in jsat.clustering.hierarchical
DivisiveLocalClusterer is a hierarchical clustering method that works by splitting the data set into sub trees from the top down.
DivisiveLocalClusterer(KClusterer, ClusterEvaluation) - Constructor for class jsat.clustering.hierarchical.DivisiveLocalClusterer
 
DivisiveLocalClusterer(DivisiveLocalClusterer) - Constructor for class jsat.clustering.hierarchical.DivisiveLocalClusterer
Copy constructor
divRow(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] / c
divRow(Matrix, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] / c
dm - Variable in class jsat.classifiers.neuralnetwork.LVQ
The distance metric to use
dm - Variable in class jsat.clustering.dissimilarity.DistanceMetricDissimilarity
The distance metric that will back this dissimilarity measure.
dm - Variable in class jsat.clustering.kmeans.KMeans
 
dm - Variable in class jsat.clustering.PAM
 
doseStoreResults() - Method in class jsat.classifiers.ClassificationModelEvaluation
 
dot(Vec) - Method in class jsat.distributions.kernels.KernelPoint
Computes the dot product between the kernel point this object represents and the given input vector in the kernel space.
dot(Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoint
Computes the dot product between the kernel point this object represents and the given input vector in the kernel space
dot(KernelPoint) - Method in class jsat.distributions.kernels.KernelPoint
Returns the dot product between this point and another in the kernel space
dot(int, Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoints
Computes the dot product between the k'th KernelPoint and the given vector in the kernel space.
dot(Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoints
Computes the dot product between each KernelPoint in this set and the given vector in the kernel space.
dot(int, KernelPoint) - Method in class jsat.distributions.kernels.KernelPoints
Computes the dot product between the k'th KernelPoint and the given KernelPoint
dot(int, KernelPoints, int) - Method in class jsat.distributions.kernels.KernelPoints
Computes the dot product between the k'th KernelPoint and the j'th KernelPoint in the given set of points.
dot(Vec) - Method in class jsat.linear.DenseVector
 
dot(Vec) - Method in class jsat.linear.RandomVector
 
dot(Vec) - Method in class jsat.linear.ScaledVector
 
dot(Vec) - Method in class jsat.linear.ShiftedVec
 
dot(Vec) - Method in class jsat.linear.SparseVector
 
dot(Vec) - Method in class jsat.linear.Vec
Computes the dot product between two vectors, which is equivalent to
Σ thisi*vi

This method should be overloaded for a serious implementation.
dot(Vec) - Method in class jsat.linear.VecPaired
 
DoubleList - Class in jsat.utils
Provides a modifiable implementation of a List using a double array.
DoubleList() - Constructor for class jsat.utils.DoubleList
Creates a new empty DoubleList
DoubleList(int) - Constructor for class jsat.utils.DoubleList
Creates a new empty DoubleList
DoubleList(Collection<Double>) - Constructor for class jsat.utils.DoubleList
Creates a new DoubleList containing the values of the given collection
DoubleParameter - Class in jsat.parameters
A double parameter that may be altered.
DoubleParameter() - Constructor for class jsat.parameters.DoubleParameter
 
DReDNetSimple - Class in jsat.classifiers.neuralnetwork
This class provides a neural network based on Geoffrey Hinton's Deep Rectified Dropout Nets.
DReDNetSimple() - Constructor for class jsat.classifiers.neuralnetwork.DReDNetSimple
Creates a new DRedNet that uses two hidden layers with 1024 neurons each.
DReDNetSimple(int...) - Constructor for class jsat.classifiers.neuralnetwork.DReDNetSimple
Create a new DReDNet that uses the specified number of hidden layers.
driftHandled(boolean) - Method in class jsat.driftdetectors.ADWIN
This implementation of ADWIN allows for choosing to drop either the old values, as is normal for a drift detector, or to drop the newer values.
driftHandled() - Method in class jsat.driftdetectors.ADWIN
 
driftHandled() - Method in class jsat.driftdetectors.BaseDriftDetector
This method should be called once the drift is handled.
driftHandled() - Method in class jsat.driftdetectors.DDM
 
drifting - Variable in class jsat.driftdetectors.BaseDriftDetector
Set to true to indicate that concept drift has occurred
driftStart - Variable in class jsat.driftdetectors.BaseDriftDetector
Set this value to the time point where the drift is believed to have started from.
DunnIndex - Class in jsat.clustering.evaluation
Computes the Dunn Index (DI) using a customizable manner.
DunnIndex(IntraClusterEvaluation, ClusterDissimilarity) - Constructor for class jsat.clustering.evaluation.DunnIndex
Creates a new DunnIndex
DunnIndex(DunnIndex) - Constructor for class jsat.clustering.evaluation.DunnIndex
Copy constructor
DUOL - Class in jsat.classifiers.linear.kernelized
Provides an implementation of Double Update Online Learning (DUOL) algorithm.
DUOL(KernelTrick) - Constructor for class jsat.classifiers.linear.kernelized.DUOL
Creates a new DUOL learner
DUOL(DUOL) - Constructor for class jsat.classifiers.linear.kernelized.DUOL
Copy constructor

E

E2LSH<V extends Vec> - Class in jsat.linear.vectorcollection.lsh
This is an implementation of Locality Sensitive Hashing for the L1 and L2 distance metrics.
E2LSH(List<V>, double, double, int, int, double, DistanceMetric, List<Double>) - Constructor for class jsat.linear.vectorcollection.lsh.E2LSH
Creates a new LSH scheme for a given distance metric
E2LSH(List<V>, double, double, int, int, double, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.lsh.E2LSH
Creates a new LSH scheme for a given distance metric
EigenValueDecomposition - Class in jsat.linear
Class for performing the Eigen Value Decomposition of a matrix.
EigenValueDecomposition(Matrix) - Constructor for class jsat.linear.EigenValueDecomposition
Creates a new new Eigen Value Decomposition.
EigenValueDecomposition(Matrix, double) - Constructor for class jsat.linear.EigenValueDecomposition
Creates a new new Eigen Value Decomposition.
ElkanKernelKMeans - Class in jsat.clustering.kmeans
An efficient implementation of the K-Means algorithm.
ElkanKernelKMeans(KernelTrick) - Constructor for class jsat.clustering.kmeans.ElkanKernelKMeans
Creates a new Kernel K Means object
ElkanKernelKMeans(ElkanKernelKMeans) - Constructor for class jsat.clustering.kmeans.ElkanKernelKMeans
 
ElkanKMeans - Class in jsat.clustering.kmeans
An efficient implementation of the K-Means algorithm.
ElkanKMeans(DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.kmeans.ElkanKMeans
Creates a new KMeans instance.
ElkanKMeans(DistanceMetric, Random) - Constructor for class jsat.clustering.kmeans.ElkanKMeans
Creates a new KMeans instance
ElkanKMeans(DistanceMetric) - Constructor for class jsat.clustering.kmeans.ElkanKMeans
Creates a new KMeans instance
ElkanKMeans() - Constructor for class jsat.clustering.kmeans.ElkanKMeans
Creates a new KMeans instance.
ElkanKMeans(ElkanKMeans) - Constructor for class jsat.clustering.kmeans.ElkanKMeans
 
embedScale() - Method in class jsat.linear.ScaledVector
Embeds the current scale factor into the base vector, so that the current scale factor can be set to 1.
embedShift() - Method in class jsat.linear.ShiftedVec
Embeds the current shift scalar into the base vector, modifying it and then setting the new shit to zero.
EMGaussianMixture - Class in jsat.clustering
An implementation of Gaussian Mixture models that learns the specified number of Gaussians using Expectation Maximization algorithm.
EMGaussianMixture(SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.EMGaussianMixture
 
EMGaussianMixture() - Constructor for class jsat.clustering.EMGaussianMixture
 
EMGaussianMixture(EMGaussianMixture) - Constructor for class jsat.clustering.EMGaussianMixture
Copy constructor.
EmphasisBoost - Class in jsat.classifiers.boosting
Emphasis Boost is a generalization of the Real AdaBoost algorithm, expanding the update term and providing the λ term to control the trade off.
EmphasisBoost() - Constructor for class jsat.classifiers.boosting.EmphasisBoost
Creates a new EmphasisBooster with shallow decision trees and λ = 0.35
EmphasisBoost(Classifier, int, double) - Constructor for class jsat.classifiers.boosting.EmphasisBoost
Creates a new EmphasisBoost learner
EmphasisBoost(EmphasisBoost) - Constructor for class jsat.classifiers.boosting.EmphasisBoost
Copy constructor
EMPTY - Static variable in class jsat.utils.ClosedHashingUtil
This value indicates that that status of an open addressing space is EMPTY, meaning any value can be stored in it
ENGLISH_STOP_SMALL_BASE - Static variable in class jsat.text.tokenizer.StopWordTokenizer
This unmodifiable set contains a very small and simple stop word list for English based on the 100 most common English words and includes all characters.
entrySet() - Method in class jsat.utils.IntDoubleMap
 
entrySet() - Method in class jsat.utils.IntDoubleMapArray
 
entrySet() - Method in class jsat.utils.LongDoubleMap
 
EpanechnikovKF - Class in jsat.distributions.empirical.kernelfunc
 
epochs - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The number of training iterations
epsClose(double, double) - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns true if the two distance values are within an acceptable epsilon ratio of each other.
epsilon - Static variable in class jsat.text.GreekLetters
 
EpsilonInsensitiveLoss - Class in jsat.lossfunctions
The ε-insensitive loss for regression L(x, y) = max(0, |x-y|-ε) is the common loss function used for Support Vector Regression.
EpsilonInsensitiveLoss(double) - Constructor for class jsat.lossfunctions.EpsilonInsensitiveLoss
Creates a new Epsilon Insensitive loss
EpsilonInsensitiveLoss(EpsilonInsensitiveLoss) - Constructor for class jsat.lossfunctions.EpsilonInsensitiveLoss
Copy constructor
eq24(double, double, double, double) - Static method in class jsat.classifiers.svm.DCDs
returns the result of evaluation equation 24 of an individual index
equals(Object) - Method in class jsat.classifiers.evaluation.Accuracy
 
equals(Object) - Method in class jsat.classifiers.evaluation.AUC
 
equals(Object) - Method in interface jsat.classifiers.evaluation.ClassificationScore
 
equals(Object) - Method in class jsat.classifiers.evaluation.F1Score
 
equals(Object) - Method in class jsat.classifiers.evaluation.FbetaScore
 
equals(Object) - Method in class jsat.classifiers.evaluation.Kappa
 
equals(Object) - Method in class jsat.classifiers.evaluation.LogLoss
 
equals(Object) - Method in class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
equals(Object) - Method in class jsat.classifiers.evaluation.Precision
 
equals(Object) - Method in class jsat.classifiers.evaluation.Recall
 
equals(Object) - Method in class jsat.distributions.Beta
 
equals(Object) - Method in class jsat.distributions.Cauchy
 
equals(Object) - Method in class jsat.distributions.ChiSquared
 
equals(Object) - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
equals(Object) - Method in class jsat.distributions.Exponential
 
equals(Object) - Method in class jsat.distributions.FisherSendor
 
equals(Object) - Method in class jsat.distributions.Gamma
 
equals(Object) - Method in class jsat.distributions.Kolmogorov
 
equals(Object) - Method in class jsat.distributions.Laplace
 
equals(Object) - Method in class jsat.distributions.Levy
 
equals(Object) - Method in class jsat.distributions.Logistic
 
equals(Object) - Method in class jsat.distributions.LogNormal
 
equals(Object) - Method in class jsat.distributions.MaxwellBoltzmann
 
equals(Object) - Method in class jsat.distributions.Normal
 
equals(Object) - Method in class jsat.distributions.Pareto
 
equals(Object) - Method in class jsat.distributions.Rayleigh
 
equals(Object) - Method in class jsat.distributions.StudentT
 
equals(Object) - Method in class jsat.distributions.Uniform
 
equals(Object) - Method in class jsat.distributions.Weibull
 
equals(Object) - Method in class jsat.linear.DenseVector
 
equals(Object, double) - Method in class jsat.linear.DenseVector
 
equals(Object) - Method in class jsat.linear.Matrix
 
equals(Object, double) - Method in class jsat.linear.Matrix
Performs the same as Matrix.equals(java.lang.Object), but allows a leniency in the differences between matrix values.
equals(Object, double) - Method in class jsat.linear.SparseVector
 
equals(Object) - Method in class jsat.linear.Vec
 
equals(Object, double) - Method in class jsat.linear.Vec
 
equals(Object) - Method in class jsat.linear.VecPaired
 
equals(Object, double) - Method in class jsat.linear.VecPaired
 
equals(Object) - Method in class jsat.math.Complex
 
equals(Object, double) - Method in class jsat.math.Complex
Checks if this is approximately equal to another Complex object
equals(Object) - Method in class jsat.parameters.Parameter
 
equals(Object) - Method in class jsat.regression.evaluation.CoefficientOfDetermination
 
equals(Object) - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
equals(Object) - Method in class jsat.regression.evaluation.MeanSquaredError
 
equals(Object) - Method in interface jsat.regression.evaluation.RegressionScore
 
equals(Object) - Method in class jsat.regression.evaluation.RelativeAbsoluteError
 
equals(Object) - Method in class jsat.regression.evaluation.RelativeSquaredError
 
equals(Object) - Method in class jsat.utils.Tuple3
 
erf(double) - Static method in class jsat.math.SpecialMath
 
erfc(double) - Static method in class jsat.math.SpecialMath
 
ERTrees - Class in jsat.classifiers.trees
Extra Randomized Trees (ERTrees) is an ensemble method built on top of ExtraTree.
ERTrees() - Constructor for class jsat.classifiers.trees.ERTrees
Creates a new Extremely Randomized Trees learner
ERTrees(int) - Constructor for class jsat.classifiers.trees.ERTrees
Creates a new Extremely Randomized Trees learner
estimateBandwidths(double, int, DataSet, List<Vec>, List<Double>, DistanceMetric, ExecutorService) - Method in enum jsat.classifiers.neuralnetwork.RBFNet.Phase2Learner
 
eta - Static variable in class jsat.text.GreekLetters
 
EuclideanCollection<V extends Vec> - Class in jsat.linear.vectorcollection
Provides a specialized collections that only supports the EuclideanDistance by brute force search.
EuclideanCollection(List<V>) - Constructor for class jsat.linear.vectorcollection.EuclideanCollection
Creates a new Vector Collection that does an efficient brute force search for only the Euclidean distance.
EuclideanCollection(EuclideanCollection) - Constructor for class jsat.linear.vectorcollection.EuclideanCollection
Copy constructor
EuclideanCollection(List<V>, ExecutorService) - Constructor for class jsat.linear.vectorcollection.EuclideanCollection
Creates a new Vector Collection that does an efficient brute force search for only the Euclidean distance.
EuclideanCollection.EuclideanCollectionFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
EuclideanCollectionFactory() - Constructor for class jsat.linear.vectorcollection.EuclideanCollection.EuclideanCollectionFactory
 
EuclideanDistance - Class in jsat.linear.distancemetrics
Euclidean Distance is the L2 norm.
EuclideanDistance() - Constructor for class jsat.linear.distancemetrics.EuclideanDistance
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.GeneralRBFKernel
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.GeneralRBFKernel
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.GeneralRBFKernel
 
eval(Vec, Vec) - Method in interface jsat.distributions.kernels.KernelTrick
Evaluate this kernel function for the two given vectors.
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in interface jsat.distributions.kernels.KernelTrick
Computes the kernel product between one vector in the original list of vectors with that of another vector not from the original list, but had information generated by KernelTrick.getQueryInfo(jsat.linear.Vec).
eval(int, int, List<? extends Vec>, List<Double>) - Method in interface jsat.distributions.kernels.KernelTrick
Produces the correct kernel evaluation given the training set and the cache generated by KernelTrick.getAccelerationCache(List).
eval(Vec, Vec) - Method in class jsat.distributions.kernels.LinearKernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.NormalizedKernel
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.NormalizedKernel
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.NormalizedKernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.PolynomialKernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.PukKernel
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.PukKernel
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.PukKernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.RationalQuadraticKernel
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.RationalQuadraticKernel
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.RationalQuadraticKernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.RBFKernel
 
eval(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.RBFKernel
 
eval(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.RBFKernel
 
eval(Vec, Vec) - Method in class jsat.distributions.kernels.SigmoidKernel
 
evalCount - Variable in class jsat.classifiers.svm.SupportVectorLearner
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, int, int) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, List<Double>, int, int) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, int, int) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, List<Double>, int, int) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, int, int) - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, List<Double>, int, int) - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, int, int) - Method in interface jsat.distributions.kernels.KernelTrick
Performs an efficient summation of kernel products of the form
αi k(xi, y)
where x are the final set of vectors, and α the associated scalar multipliers
evalSum(List<? extends Vec>, List<Double>, double[], Vec, List<Double>, int, int) - Method in interface jsat.distributions.kernels.KernelTrick
Performs an efficient summation of kernel products of the form
αi k(xi, y)
where x are the final set of vectors, and α the associated scalar multipliers
evalSum(List<? extends Vec>, List<Double>, double[], Vec, int, int) - Method in class jsat.distributions.kernels.NormalizedKernel
 
evalSum(List<? extends Vec>, List<Double>, double[], Vec, List<Double>, int, int) - Method in class jsat.distributions.kernels.NormalizedKernel
 
evalSumK(int, int, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
Computes the kernel sum of data point i against all the points in cluster group clusterID.
evalSumK(Vec, List<Double>, int, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
Computes the kernel sum of the given data point against all the points in cluster group clusterID.
evaluate(int[], DataSet) - Method in class jsat.clustering.evaluation.AdjustedRandIndex
 
evaluate(List<List<DataPoint>>) - Method in class jsat.clustering.evaluation.AdjustedRandIndex
 
evaluate(int[], DataSet) - Method in interface jsat.clustering.evaluation.ClusterEvaluation
Evaluates the clustering of the given clustering.
evaluate(List<List<DataPoint>>) - Method in interface jsat.clustering.evaluation.ClusterEvaluation
Evaluates the clustering of the given set of clusters.
evaluate(int[], DataSet) - Method in class jsat.clustering.evaluation.ClusterEvaluationBase
 
evaluate(int[], DataSet) - Method in class jsat.clustering.evaluation.DaviesBouldinIndex
 
evaluate(List<List<DataPoint>>) - Method in class jsat.clustering.evaluation.DaviesBouldinIndex
 
evaluate(int[], DataSet) - Method in class jsat.clustering.evaluation.DunnIndex
 
evaluate(List<List<DataPoint>>) - Method in class jsat.clustering.evaluation.DunnIndex
 
evaluate(int[], DataSet, int) - Method in interface jsat.clustering.evaluation.intra.IntraClusterEvaluation
Evaluates the cluster represented by the given list of data points.
evaluate(List<DataPoint>) - Method in interface jsat.clustering.evaluation.intra.IntraClusterEvaluation
Evaluates the cluster represented by the given list of data points.
evaluate(int[], DataSet, int) - Method in class jsat.clustering.evaluation.intra.MaxDistance
 
evaluate(List<DataPoint>) - Method in class jsat.clustering.evaluation.intra.MaxDistance
 
evaluate(int[], DataSet, int) - Method in class jsat.clustering.evaluation.intra.MeanCentroidDistance
 
evaluate(List<DataPoint>) - Method in class jsat.clustering.evaluation.intra.MeanCentroidDistance
 
evaluate(int[], DataSet, int) - Method in class jsat.clustering.evaluation.intra.MeanDistance
 
evaluate(List<DataPoint>) - Method in class jsat.clustering.evaluation.intra.MeanDistance
 
evaluate(int[], DataSet, int) - Method in class jsat.clustering.evaluation.intra.SoSCentroidDistance
 
evaluate(List<DataPoint>) - Method in class jsat.clustering.evaluation.intra.SoSCentroidDistance
 
evaluate(int[], DataSet, int) - Method in class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
 
evaluate(List<DataPoint>) - Method in class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
 
evaluate(List<List<DataPoint>>) - Method in class jsat.clustering.evaluation.IntraClusterSumEvaluation
 
evaluate(int[], DataSet) - Method in class jsat.clustering.evaluation.NormalizedMutualInformation
 
evaluate(List<List<DataPoint>>) - Method in class jsat.clustering.evaluation.NormalizedMutualInformation
 
evaluateCrossValidation(int) - Method in class jsat.classifiers.ClassificationModelEvaluation
Performs an evaluation of the classifier using the training data set.
evaluateCrossValidation(int, Random) - Method in class jsat.classifiers.ClassificationModelEvaluation
Performs an evaluation of the classifier using the training data set.
evaluateCrossValidation(List<ClassificationDataSet>) - Method in class jsat.classifiers.ClassificationModelEvaluation
Performs an evaluation of the classifier using the training data set, where the folds of the training data set are provided by the user.
evaluateCrossValidation(List<ClassificationDataSet>, List<ClassificationDataSet>) - Method in class jsat.classifiers.ClassificationModelEvaluation
Note: Most people should never need to call this method.
evaluateCrossValidation(int) - Method in class jsat.regression.RegressionModelEvaluation
Performs an evaluation of the regressor using the training data set.
evaluateCrossValidation(int, Random) - Method in class jsat.regression.RegressionModelEvaluation
Performs an evaluation of the regressor using the training data set.
evaluateCrossValidation(List<RegressionDataSet>) - Method in class jsat.regression.RegressionModelEvaluation
Performs an evaluation of the regressor using the training data set, where the folds of the training data set are provided by the user.
evaluateCrossValidation(List<RegressionDataSet>, List<RegressionDataSet>) - Method in class jsat.regression.RegressionModelEvaluation
Note: Most people should never need to call this method.
evaluateFeatureImportance(DataSet<Type>) - Method in class jsat.classifiers.trees.ERTrees
Measures the statistics of feature importance from the trees in this forest.
evaluateFeatureImportance(DataSet<Type>, TreeFeatureImportanceInference) - Method in class jsat.classifiers.trees.ERTrees
Measures the statistics of feature importance from the trees in this forest.
evaluateTestSet(ClassificationDataSet) - Method in class jsat.classifiers.ClassificationModelEvaluation
Performs an evaluation of the classifier using the initial data set to train, and testing on the given data set.
evaluateTestSet(RegressionDataSet) - Method in class jsat.regression.RegressionModelEvaluation
Performs an evaluation of the regressor using the initial data set to train, and testing on the given data set.
execute(Runnable) - Method in class jsat.utils.FakeExecutor
 
exp(double) - Static method in class jsat.math.FastMath
Exponentiates the given input value
expFunc - Static variable in class jsat.math.MathTricks
Convenience object for taking the exp of the first index
Exponential - Class in jsat.distributions
 
Exponential() - Constructor for class jsat.distributions.Exponential
 
Exponential(double) - Constructor for class jsat.distributions.Exponential
 
ExponentialMovingStatistics - Class in jsat.math
This class keeps track of a set of Exponential Moving statistics (the mean and standard deviation).
ExponentialMovingStatistics() - Constructor for class jsat.math.ExponentialMovingStatistics
Creates a new object for keeping an exponential estimate of the mean and variance.
ExponentialMovingStatistics(double) - Constructor for class jsat.math.ExponentialMovingStatistics
Creates a new object for keeping an exponential estimate of the mean and variance
ExponentialMovingStatistics(double, double, double) - Constructor for class jsat.math.ExponentialMovingStatistics
Creates a new object for keeping an exponential estimate of the mean and variance
ExponetialDecay - Class in jsat.math.decayrates
The Exponential Decay requires the maximum time step to be explicitly known ahead of time.
ExponetialDecay(double) - Constructor for class jsat.math.decayrates.ExponetialDecay
Creates a new Exponential Decay
ExponetialDecay(double, double) - Constructor for class jsat.math.decayrates.ExponetialDecay
Creates a new Exponential Decay

Note that when using ExponetialDecay.rate(double, double, double), the maxTime is always superceded by the value given to the function.
ExponetialDecay() - Constructor for class jsat.math.decayrates.ExponetialDecay
Creates a new decay rate that decays down to 1e-4
EXTRA_INDEX_INFO - Static variable in class jsat.utils.ClosedHashingUtil
This store the value Integer.MIN_VALUE in the upper 32 bits of a long, so that the lower 32 bits can store any regular integer.
extractTrueVec(Vec) - Static method in class jsat.linear.VecPaired
This method is used assuming multiple VecPaired are used together.
ExtraTree - Class in jsat.classifiers.trees
The ExtraTree is an Extremely Randomized Tree.
ExtraTree() - Constructor for class jsat.classifiers.trees.ExtraTree
Creates a new Extra Tree that will use all features in the training set
ExtraTree(int, int) - Constructor for class jsat.classifiers.trees.ExtraTree
Creates a new Extra Tree
eye(int) - Static method in class jsat.linear.Matrix
Creates a new dense identity matrix with k rows and columns.

F

f(int, Set<Integer>, ClassificationDataSet) - Method in class jsat.classifiers.bayesian.graphicalmodel.K2NetworkLearner
 
f(double...) - Method in class jsat.classifiers.linear.LinearBatch.GradFunction
 
f(Vec) - Method in class jsat.classifiers.linear.LinearBatch.GradFunction
 
f(Vec, Vec) - Method in class jsat.classifiers.linear.LinearBatch.GradFunction
 
f(Vec, Vec, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch.GradFunction
 
f(Vec) - Method in class jsat.classifiers.linear.LinearBatch.LossFunction
 
f(Vec, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch.LossFunction
 
f(double...) - Method in class jsat.classifiers.linear.LinearBatch.LossFunction
 
f(Vec) - Method in class jsat.classifiers.linear.LinearBatch.LossMCFunction
 
f(Vec, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch.LossMCFunction
 
f(double...) - Method in class jsat.classifiers.linear.LinearBatch.LossMCFunction
 
f(double...) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
 
f(Vec) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
 
f(double...) - Method in interface jsat.math.Function
 
f(Vec) - Method in interface jsat.math.Function
 
f(double...) - Method in class jsat.math.FunctionBase
 
f(double...) - Method in interface jsat.math.FunctionMat
Computes a matrix based on multivariate input
f(Vec) - Method in interface jsat.math.FunctionMat
Computes a matrix based on multivariate input
f(Vec, Matrix) - Method in interface jsat.math.FunctionMat
Computes a matrix based on multivariate input
f(Vec, Matrix, ExecutorService) - Method in interface jsat.math.FunctionMat
Computes a matrix based on multivariate input
f(Vec, ExecutorService) - Method in interface jsat.math.FunctionP
Computes the result of a single variate function
f(double...) - Method in interface jsat.math.FunctionVec
Computes the function value given the input x
f(Vec) - Method in interface jsat.math.FunctionVec
Computes the function value given the input x
f(Vec, Vec) - Method in interface jsat.math.FunctionVec
Computes the function value given the input x
f(Vec, Vec, ExecutorService) - Method in interface jsat.math.FunctionVec
Computes the function value given the input x
f(double...) - Method in class jsat.math.IndexFunction
 
f(Vec) - Method in class jsat.math.IndexFunction
 
f(double...) - Method in class jsat.math.optimization.RosenbrockFunction
 
f(Vec) - Method in class jsat.math.optimization.RosenbrockFunction
 
F1Score - Class in jsat.classifiers.evaluation
The F1 score is the harmonic mean of Precision and Recall.
F1Score() - Constructor for class jsat.classifiers.evaluation.F1Score
 
F1Score(F1Score) - Constructor for class jsat.classifiers.evaluation.F1Score
 
f_s - Variable in class jsat.classifiers.linear.kernelized.DUOL
Cached outputs of the current decision function on each support vector
FailedToFitException - Exception in jsat.exceptions
 
FailedToFitException(Exception, String) - Constructor for exception jsat.exceptions.FailedToFitException
 
FailedToFitException(Exception, Throwable) - Constructor for exception jsat.exceptions.FailedToFitException
 
FailedToFitException(Exception, String, Throwable) - Constructor for exception jsat.exceptions.FailedToFitException
 
FailedToFitException(Exception) - Constructor for exception jsat.exceptions.FailedToFitException
 
FailedToFitException(String) - Constructor for exception jsat.exceptions.FailedToFitException
 
failureRate(double) - Method in class jsat.distributions.Weibull
 
FakeExecutor - Class in jsat.utils
Provides a fake ExecutorService that immediatly runs any given runnable on the main thread.
FakeExecutor() - Constructor for class jsat.utils.FakeExecutor
 
FastICA - Class in jsat.datatransform
Provides an implementation of the FastICA algorithm for Independent Component Analysis (ICA).
FastICA() - Constructor for class jsat.datatransform.FastICA
Creates a new FastICA transform that will attempt to fit 10 components.
FastICA(int) - Constructor for class jsat.datatransform.FastICA
Creates a new FastICA transform
FastICA(DataSet, int) - Constructor for class jsat.datatransform.FastICA
Creates a new FastICA transform
FastICA(int, FastICA.NegEntropyFunc, boolean) - Constructor for class jsat.datatransform.FastICA
Creates a new FastICA transform
FastICA(DataSet, int, FastICA.NegEntropyFunc, boolean) - Constructor for class jsat.datatransform.FastICA
Creates a new FastICA transform
FastICA(FastICA) - Constructor for class jsat.datatransform.FastICA
Copy constructor
FastICA.DefaultNegEntropyFunc - Enum in jsat.datatransform
A set of default negative entropy functions as specified in the original FastICA paper
FastICA.NegEntropyFunc - Interface in jsat.datatransform
The FastICA algorithm requires a function f(x) to be used iteratively in the algorithm, but only makes use of the first and second derivatives of the algorithm.
FastMath - Class in jsat.math
This class contains fast implementations of many of the methods located in Math and SpecialMath.
FastMath() - Constructor for class jsat.math.FastMath
 
FbetaScore - Class in jsat.classifiers.evaluation
The Fβ score is the generalization of F1Score, where β indicates the level of preference for precision over recall.
FbetaScore(double) - Constructor for class jsat.classifiers.evaluation.FbetaScore
Creates a new Fβ score
FbetaScore(FbetaScore) - Constructor for class jsat.classifiers.evaluation.FbetaScore
Copy constructor
fcache - Variable in class jsat.classifiers.svm.PlattSMO
 
featuresUsed() - Method in class jsat.classifiers.trees.DecisionTree.Node
 
featuresUsed() - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns a collection of the indices of the features used by this node in the tree to make its decision about what branch to use next.
feedfoward(Vec) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Feeds the given singular pattern through the network and computes its activations
FibHeap<T> - Class in jsat.utils
 
FibHeap() - Constructor for class jsat.utils.FibHeap
 
FibHeap.FibNode<T> - Class in jsat.utils
 
FibNode(T, double) - Constructor for class jsat.utils.FibHeap.FibNode
 
fillCol(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Fills the values in a column of the matrix
fillRow(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Fills the values in a row of the matrix
finalizeModel() - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
Finalizes the current model.
finalizeModel() - Method in class jsat.regression.KernelRLS
Finalizes the model.
finalMergeStep(int, int, Vec, List<Double>, double, boolean) - Method in class jsat.distributions.kernels.KernelPoint
Performs the last merging step removing the old vecs and adding the new merged one
finalSigma - Static variable in class jsat.text.GreekLetters
 
find() - Method in class jsat.utils.UnionFind
 
findClosestCluster(Vec, List<Double>) - Method in class jsat.clustering.kmeans.ElkanKernelKMeans
 
findClosestCluster(Vec) - Method in class jsat.clustering.kmeans.KernelKMeans
Finds the cluster ID that is closest to the given data point
findClosestCluster(Vec, List<Double>) - Method in class jsat.clustering.kmeans.KernelKMeans
Finds the cluster ID that is closest to the given data point
findMin(double, double, Function, double, int) - Static method in class jsat.math.optimization.oned.GoldenSearch
Attempts to numerically find the value x that minimizes the one dimensional function f(x) in the range [min, max].
finishAdding() - Method in class jsat.text.HashedTextDataLoader
Once all original documents have been added, this method is called so that post processing steps can be applied.
finishAdding() - Method in class jsat.text.TextDataLoader
Once all original documents have been added, this method is called so that post processing steps can be applied.
finishUpdating() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Calling this method indicates that the user has no intentions of updating the network again and is ready to use it for prediction.
first() - Method in class jsat.utils.BoundedSortedList
 
first() - Method in class jsat.utils.IntSortedSet
 
first() - Method in class jsat.utils.SortedArrayList
 
FisherSendor - Class in jsat.distributions
Also known as the F distribution.
FisherSendor(double, double) - Constructor for class jsat.distributions.FisherSendor
 
fit(Vec) - Method in enum jsat.classifiers.bayesian.NaiveBayes.NumericalHandeling
 
fit(DataSet) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
fit(DataSet) - Method in class jsat.datatransform.AutoDeskewTransform
 
fit(DataSet) - Method in interface jsat.datatransform.DataTransform
Fits this transform to the given dataset.
fit(DataSet) - Method in class jsat.datatransform.DataTransformProcess
 
fit(DataSet) - Method in class jsat.datatransform.DenseSparceTransform
 
fit(DataSet) - Method in class jsat.datatransform.FastICA
 
fit(DataSet) - Method in class jsat.datatransform.featureselection.BDS
 
fit(DataSet) - Method in class jsat.datatransform.featureselection.LRS
 
fit(DataSet) - Method in class jsat.datatransform.featureselection.MutualInfoFS
 
fit(DataSet) - Method in class jsat.datatransform.featureselection.ReliefF
 
fit(DataSet, ExecutorService) - Method in class jsat.datatransform.featureselection.ReliefF
 
fit(DataSet) - Method in class jsat.datatransform.featureselection.SBS
 
fit(DataSet) - Method in class jsat.datatransform.featureselection.SFS
 
fit(DataSet) - Method in class jsat.datatransform.Imputer
 
fit(DataSet) - Method in class jsat.datatransform.InsertMissingValuesTransform
 
fit(DataSet) - Method in class jsat.datatransform.InverseOfTransform
 
fit(DataSet) - Method in class jsat.datatransform.JLTransform
 
fit(DataSet) - Method in class jsat.datatransform.kernel.KernelPCA
 
fit(DataSet) - Method in class jsat.datatransform.kernel.Nystrom
 
fit(DataSet) - Method in class jsat.datatransform.kernel.RFF_RBF
 
fit(DataSet) - Method in class jsat.datatransform.LinearTransform
 
fit(DataSet) - Method in class jsat.datatransform.NominalToNumeric
 
fit(DataSet) - Method in class jsat.datatransform.NumericalToHistogram
 
fit(DataSet) - Method in class jsat.datatransform.PCA
 
fit(DataSet) - Method in class jsat.datatransform.PNormNormalization
 
fit(DataSet) - Method in class jsat.datatransform.PolynomialTransform
 
fit(DataSet) - Method in class jsat.datatransform.RemoveAttributeTransform
 
fit(DataSet) - Method in class jsat.datatransform.StandardizeTransform
 
fit(DataSet) - Method in class jsat.datatransform.UnitVarianceTransform
 
fit(DataSet) - Method in class jsat.datatransform.WhitenedPCA
 
fit(DataSet) - Method in class jsat.datatransform.WhitenedZCA
 
fit(DataSet) - Method in class jsat.datatransform.ZeroMeanTransform
 
FLAME - Class in jsat.clustering
Provides an implementation of the FLAME clustering algorithm.
FLAME(DistanceMetric, int, int) - Constructor for class jsat.clustering.FLAME
Creates a new FLAME clustering object
FLAME(FLAME) - Constructor for class jsat.clustering.FLAME
Copy constructor
fn - Variable in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
false negatives
folds - Variable in class jsat.classifiers.calibration.BinaryCalibration
The number of CV folds
folds - Variable in class jsat.parameters.ModelSearch
The number of CV folds
Forgetron - Class in jsat.classifiers.linear.kernelized
Implementation of the first two Forgetron algorithms.
Forgetron(KernelTrick, int) - Constructor for class jsat.classifiers.linear.kernelized.Forgetron
Creates a new Forgetron
Forgetron(Forgetron) - Constructor for class jsat.classifiers.linear.kernelized.Forgetron
Copy constructor
forwardSub(Matrix, Vec) - Static method in class jsat.linear.LUPDecomposition
Solves for the vector x such that L x = b
forwardSub(Matrix, Matrix) - Static method in class jsat.linear.LUPDecomposition
Solves for the matrix x such that L x = b
forwardSub(Matrix, Matrix, ExecutorService) - Static method in class jsat.linear.LUPDecomposition
Solves for the matrix x such that L x = b
fp - Variable in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
false positives
from(int...) - Static method in class jsat.utils.IntSet
Creates a set of integers from the given list of integers.
from(int...) - Static method in class jsat.utils.IntSortedSet
Creates a set of integers from the given list of integers.
fScaleConstant - Variable in class jsat.classifiers.boosting.LogitBoost
The constant factor that the sum of regressors is scaled by.
Function - Interface in jsat.math
 
FunctionBase - Class in jsat.math
Simple base abstract class for implementing a Function by implementing FunctionBase.f(double[]) to call the vector version.
FunctionBase() - Constructor for class jsat.math.FunctionBase
 
FunctionMat - Interface in jsat.math
Interface for representing a function that should return a Matrix object as the result.
FunctionP - Interface in jsat.math
FunctionP is the same as Function except it supports parallel computation of the result.
FunctionVec - Interface in jsat.math
Interface for representing a function that should return a vector as the result.

G

gain(ImpurityScore, ImpurityScore...) - Static method in class jsat.classifiers.trees.ImpurityScore
Computes the gain in score from a splitting of the data set
gain(ImpurityScore, double, ImpurityScore...) - Static method in class jsat.classifiers.trees.ImpurityScore
Computes the gain in score from a splitting of the data set
gamma - Variable in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
Gamma - Class in jsat.distributions
 
Gamma(double, double) - Constructor for class jsat.distributions.Gamma
 
gamma(double) - Static method in class jsat.math.SpecialMath
The gamma function is a generalization of the factorial function.
gamma - Static variable in class jsat.text.GreekLetters
 
gammaIncLow(double, double) - Static method in class jsat.math.SpecialMath
Computes the lower incomplete gamma function, γ(a,z).
gammaIncUp(double, double) - Static method in class jsat.math.SpecialMath
Computes the incomplete gamma function, Γ(a,z).
gammaP(double, double) - Static method in class jsat.math.SpecialMath
Returns the regularized gamma function P(a,z) = γ(a,z)/Γ(a).
gammaPSeries(double, double) - Static method in class jsat.math.SpecialMath
 
gammaQ(double, double) - Static method in class jsat.math.SpecialMath
Computes the regularized gamma function Q(a,z) = Γ(a,z)/Γ(a).
gammToSigma(double) - Static method in class jsat.distributions.kernels.RBFKernel
Another common (equivalent) form of the RBF kernel is k(x, y) = exp(-γ||x-y||2).
GapStatistic - Class in jsat.clustering
This class implements a method for estimating the number of clusters in a data set called the Gap Statistic.
GapStatistic() - Constructor for class jsat.clustering.GapStatistic
Creates a new Gap clusterer using k-means as the base clustering algorithm
GapStatistic(KClusterer) - Constructor for class jsat.clustering.GapStatistic
Creates a new Gap clusterer using the base clustering algorithm given.
GapStatistic(KClusterer, boolean) - Constructor for class jsat.clustering.GapStatistic
Creates a new Gap clsuterer using the base clustering algorithm given.
GapStatistic(KClusterer, boolean, int, DistanceMetric) - Constructor for class jsat.clustering.GapStatistic
Creates a new Gap clsuterer using the base clustering algorithm given.
GapStatistic(GapStatistic) - Constructor for class jsat.clustering.GapStatistic
Copy constructor
GaussianNormalInit - Class in jsat.classifiers.neuralnetwork.initializers
This object initializes the values of weights by sampling from the zero mean Gaussian
GaussianNormalInit(double) - Constructor for class jsat.classifiers.neuralnetwork.initializers.GaussianNormalInit
Creates a new GuassianNormalInit object for initializing weights
GaussKF - Class in jsat.distributions.empirical.kernelfunc
 
GeneralRBFKernel - Class in jsat.distributions.kernels
This class provides a generalization of the RBFKernel to arbitrary distance metrics, and is of the form exp(-d(x, y)2/(2 σ2 )).
GeneralRBFKernel(DistanceMetric, double) - Constructor for class jsat.distributions.kernels.GeneralRBFKernel
Creates a new Generic RBF Kernel
generateData(int) - Method in class jsat.utils.GridDataGenerator
Generates a new data set.
GenericMatrix - Class in jsat.linear
This Class provides default implementations of most all functions in row major form.
GenericMatrix() - Constructor for class jsat.linear.GenericMatrix
 
get(int) - Method in class jsat.linear.ConcatenatedVec
 
get(int) - Method in class jsat.linear.ConstantVector
 
get(int, int) - Method in class jsat.linear.DenseMatrix
 
get(int) - Method in class jsat.linear.DenseVector
 
get(int, int) - Method in class jsat.linear.Matrix
Returns the value stored at at the matrix position Ai,j
get(int, int) - Method in class jsat.linear.MatrixOfVecs
 
get(int) - Method in class jsat.linear.Poly2Vec
 
get(int, int) - Method in class jsat.linear.RandomMatrix
 
get(int) - Method in class jsat.linear.RandomVector
 
get(int) - Method in class jsat.linear.ScaledVector
 
get(int) - Method in class jsat.linear.ShiftedVec
 
get(int, int) - Method in class jsat.linear.SparseMatrix
 
get(int) - Method in class jsat.linear.SparseVector
 
get(int, int) - Method in class jsat.linear.SubMatrix
 
get(int) - Method in class jsat.linear.SubVector
 
get(int, int) - Method in class jsat.linear.TransposeView
 
get(int) - Method in class jsat.linear.Vec
Gets the value stored at a specific index in the vector
get(int) - Method in class jsat.linear.VecPaired
 
get(int) - Method in class jsat.linear.VecWithNorm
 
get() - Method in class jsat.utils.concurrent.AtomicDouble
 
get(int) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Gets the current value at position i.
get(K) - Method in class jsat.utils.concurrent.ConcurrentCacheLRU
 
get(int) - Method in class jsat.utils.DoubleList
 
get(int) - Method in class jsat.utils.IntDoubleMap
Returns the value to which the specified key is mapped, or Double.NaN if this map contains no mapping for the key.
get(Object) - Method in class jsat.utils.IntDoubleMap
 
get(int) - Method in class jsat.utils.IntDoubleMapArray
Returns the value to which the specified key is mapped, or Double.NaN if this map contains no mapping for the key.
get(Object) - Method in class jsat.utils.IntDoubleMapArray
 
get(int) - Method in class jsat.utils.IntList
 
get(int) - Method in class jsat.utils.LongList
 
get(int) - Method in class jsat.utils.SimpleList
 
getA(int, double...) - Method in class jsat.math.ContinuedFraction
The a term of a continued fraction is the value that occurs as one of the numerators, an its depth starts at 1.
getAccelerationCache(List<? extends Vec>) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
getAccelerationCache(List<? extends Vec>) - Method in interface jsat.distributions.kernels.KernelTrick
Creates a new list cache values from a given list of training set vectors.
getAccelerationCache(List<? extends Vec>) - Method in class jsat.distributions.kernels.NormalizedKernel
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.CosineDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.CosineDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
getAccelerationCache(List<? extends Vec>) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Returns a cache of double values associated with the given list of vectors in the given order.
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Returns a cache of double values associated with the given list of vectors in the given order.
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.KernelDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.KernelDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
getAccelerationCache(List<? extends Vec>) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
getAccelerationCache(List<? extends Vec>, ExecutorService) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
getActivationFunction() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the activation function used for training the network
getAlpha() - Method in class jsat.classifiers.linear.ALMA2
Returns the approximation coefficient used
getAlpha() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Returns the approximation coefficient used
getAlpha() - Method in class jsat.classifiers.linear.NewGLMNET
 
getAlpha() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the extra parameter value
getAlpha() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns the alpha bandwidth learning parameter
getAlpha() - Method in class jsat.clustering.LSDBC
Returns the scale value that will control how many points are added to a cluster.
getAlpha() - Method in class jsat.datatransform.visualization.TSNE
 
getAlpha() - Method in class jsat.distributions.kernels.PolynomialKernel
Returns the scaling parameter
getAlpha() - Method in class jsat.distributions.kernels.SigmoidKernel
Returns the scaling parameter
getAlpha() - Method in class jsat.distributions.multivariate.SymmetricDirichlet
Returns the alpha value used by this distribution
getAlpha() - Method in class jsat.math.decayrates.InverseDecay
Returns the scaling parameter
getAlpha() - Method in class jsat.math.decayrates.PowerDecay
Returns the scaling parameter
getAlpha() - Method in class jsat.text.topicmodel.OnlineLDAsvi
 
getAlphas() - Method in class jsat.distributions.multivariate.Dirichlet
Returns the backing vector that contains the alphas specifying the current distribution.
getAltVar() - Method in interface jsat.testing.onesample.OneSampleTest
 
getAltVar() - Method in class jsat.testing.onesample.TTest
 
getAltVar() - Method in class jsat.testing.onesample.ZTest
 
getAndAdd(double) - Method in class jsat.utils.concurrent.AtomicDouble
 
getAndAdd(int, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically adds the given value to the element at index i.
getAndDecrement(int) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically decrements by one the element at index i.
getAndIncrement(int) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically increments by one the element at index i.
getAndSet(int, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically sets the element at position i to the given value and returns the old value.
getArg() - Method in class jsat.math.Complex
Computes the Argument, also called phase, of this complex number.
getASCIIName() - Method in class jsat.parameters.DecayRateParameter
 
getASCIIName() - Method in class jsat.parameters.KernelFunctionParameter
 
getASCIIName() - Method in class jsat.parameters.MetricParameter
 
getASCIIName() - Method in class jsat.parameters.Parameter
Returns the name of this parameter using only valid ACII characters.
getAsDPPList() - Method in class jsat.classifiers.ClassificationDataSet
Returns the data set as a list of DataPointPair.
getAsDPPList() - Method in class jsat.regression.RegressionDataSet
Returns a new list containing copies of the data points in this data set, paired with their regression target values.
getAsFloatDPPList() - Method in class jsat.classifiers.ClassificationDataSet
Returns the data set as a list of DataPointPair.
getB() - Method in class jsat.classifiers.linear.ALMA2
Returns the B value of the ALMA algorithm
getB() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Returns the B value of the ALMA algorithm
getB() - Method in class jsat.distributions.Laplace
 
getB(int, double...) - Method in class jsat.math.ContinuedFraction
The b term of a continued fraction is the value that is added to the continuing fraction, its depth starts at 0.
getBackingArray() - Method in class jsat.utils.DoubleList
Returns the reference to the array that backs this list.
getBackingList() - Method in class jsat.SimpleDataSet
 
getBandwith() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
getBandwith() - Method in class jsat.distributions.multivariate.MetricKDE
Returns the current bandwidth used
getBase() - Method in class jsat.linear.ScaledVector
Returns the base vector that is being scaled
getBase() - Method in class jsat.linear.ShiftedVec
 
getBase() - Method in class jsat.linear.VecWithNorm
Return the base vector that is having its norm tracked
getBaseClassifier() - Method in class jsat.parameters.ModelSearch
Returns the base classifier that was originally passed in when constructing this GridSearch.
getBaseMatrix() - Method in class jsat.linear.SubMatrix
Returns the matrix that is the base for this sub matrix.
getBaseRegressor() - Method in class jsat.parameters.ModelSearch
Returns the base regressor that was originally passed in when constructing this GridSearch.
getBaseRegressorClone() - Method in class jsat.regression.RANSAC
Once RANSAC is complete, it maintains its trained version of the finalized regressor.
getBasisSamplingMethod() - Method in class jsat.datatransform.kernel.KernelPCA
Returns the method of selecting the basis vectors
getBasisSamplingMethod() - Method in class jsat.datatransform.kernel.Nystrom
Returns the method of selecting the basis vectors
getBasisSize() - Method in class jsat.datatransform.kernel.KernelPCA
Returns the number of basis vectors to use
getBasisSize() - Method in class jsat.datatransform.kernel.Nystrom
Returns the number of basis vectors to use
getBasisSize() - Method in class jsat.distributions.kernels.KernelPoint
Returns the number of vectors serving as the basis set
getBasisSize() - Method in class jsat.distributions.kernels.KernelPoints
Returns the number of basis vectors in use.
getBatchSize() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the training batch size
getBatchSize() - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
getBatchSize() - Method in class jsat.classifiers.svm.Pegasos
Returns the number of points used in each iteration
getBatchSize() - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Returns the batch size used at each iteration
getBatchSize() - Method in class jsat.regression.StochasticRidgeRegression
Returns the batch size for updates
getBestDistribution(Vec) - Static method in class jsat.distributions.DistributionSearch
Searches the distributions that are known for a possible fit, and returns what appears to be the best fit.
getBestDistribution(Vec, double) - Static method in class jsat.distributions.DistributionSearch
Searches the distributions that are known for a possible fit, and returns what appears to be the best fit.
getBestDistribution(Vec, ContinuousDistribution...) - Static method in class jsat.distributions.DistributionSearch
Searches the distributions that are given for a possible fit, and returns what appears to be the best fit.
getBestDistribution(Vec, double, ContinuousDistribution...) - Static method in class jsat.distributions.DistributionSearch
Searches the distributions that are given for a possible fit, and returns what appears to be the best fit.
getBeta() - Method in class jsat.math.optimization.ModifiedOWLQN
 
getBias() - Method in class jsat.classifiers.linear.ALMA2
 
getBias(int) - Method in class jsat.classifiers.linear.ALMA2
 
getBias() - Method in class jsat.classifiers.linear.AROW
 
getBias(int) - Method in class jsat.classifiers.linear.AROW
 
getBias() - Method in class jsat.classifiers.linear.BBR
 
getBias(int) - Method in class jsat.classifiers.linear.BBR
 
getBias(int) - Method in class jsat.classifiers.linear.LinearBatch
 
getBias(int) - Method in class jsat.classifiers.linear.LinearSGD
 
getBias() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
getBias(int) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
getBias() - Method in class jsat.classifiers.linear.NewGLMNET
 
getBias(int) - Method in class jsat.classifiers.linear.NewGLMNET
 
getBias() - Method in class jsat.classifiers.linear.NHERD
 
getBias(int) - Method in class jsat.classifiers.linear.NHERD
 
getBias() - Method in class jsat.classifiers.linear.PassiveAggressive
 
getBias(int) - Method in class jsat.classifiers.linear.PassiveAggressive
 
getBias() - Method in class jsat.classifiers.linear.ROMMA
 
getBias(int) - Method in class jsat.classifiers.linear.ROMMA
 
getBias() - Method in class jsat.classifiers.linear.SCD
 
getBias(int) - Method in class jsat.classifiers.linear.SCD
 
getBias() - Method in class jsat.classifiers.linear.SCW
 
getBias(int) - Method in class jsat.classifiers.linear.SCW
 
getBias(int) - Method in class jsat.classifiers.linear.SPA
 
getBias() - Method in class jsat.classifiers.linear.STGD
 
getBias(int) - Method in class jsat.classifiers.linear.STGD
 
getBias(int) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
getBias() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
getBias(int) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
getBias() - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
getBias(int) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
getBias() - Method in class jsat.classifiers.svm.DCD
 
getBias(int) - Method in class jsat.classifiers.svm.DCD
 
getBias() - Method in class jsat.classifiers.svm.DCDs
 
getBias(int) - Method in class jsat.classifiers.svm.DCDs
 
getBias() - Method in class jsat.classifiers.svm.Pegasos
 
getBias(int) - Method in class jsat.classifiers.svm.Pegasos
 
getBias() - Method in class jsat.regression.LogisticRegression
 
getBias(int) - Method in class jsat.regression.LogisticRegression
 
getBias() - Method in class jsat.regression.MultipleLinearRegression
 
getBias(int) - Method in class jsat.regression.MultipleLinearRegression
 
getBias() - Method in class jsat.regression.StochasticRidgeRegression
 
getBias(int) - Method in class jsat.regression.StochasticRidgeRegression
 
getBias(int) - Method in interface jsat.SimpleWeightVectorModel
Returns the bias term used with the weight vector for the given class index.
getBias() - Method in interface jsat.SingleWeightVectorModel
Returns the bias term used for the model, or 0 of the model does not support or was not trained with a bias term.
getBiasInit() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getBudget() - Method in class jsat.classifiers.linear.kernelized.BOGD
Returns the maximum number of allowed support vectors
getBudget() - Method in class jsat.classifiers.linear.kernelized.Forgetron
Returns the current budget
getBudgetSize() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the budget size, or maximum number of allowed support vectors.
getBudgetStrategy() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the method of budget maintenance
getBudgetStrategy() - Method in class jsat.distributions.kernels.KernelPoint
Returns the budget method used
getBudgetStrategy() - Method in class jsat.distributions.kernels.KernelPoints
Returns the budget method used
getBurnIn() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns the number of burn in rounds
getBurnIn() - Method in class jsat.classifiers.svm.SBP
 
getC() - Method in class jsat.classifiers.linear.ALMA2
 
getC() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
getC() - Method in class jsat.classifiers.linear.kernelized.DUOL
Returns the aggressiveness parameter
getC() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Returns the regularization tradeoff parameter
getC() - Method in class jsat.classifiers.linear.NewGLMNET
 
getC() - Method in class jsat.classifiers.linear.NHERD
Returns the aggressiveness parameter
getC() - Method in class jsat.classifiers.linear.PassiveAggressive
Returns the aggressiveness parameter
getC() - Method in class jsat.classifiers.linear.SCW
Returns the aggressiveness parameter
getC() - Method in class jsat.classifiers.linear.SPA
Returns the aggressiveness parameter
getC() - Method in class jsat.classifiers.svm.DCD
Returns the penalty parameter for misclassifications.
getC() - Method in class jsat.classifiers.svm.DCDs
Returns the penalty parameter for misclassifications.
getC() - Method in class jsat.classifiers.svm.DCSVM
Returns the soft margin complexity parameter of the SVM
getC() - Method in class jsat.classifiers.svm.extended.OnlineAMM
Returns the pruning constant
getC() - Method in class jsat.classifiers.svm.LSSVM
Returns the regularization parameter value used
getC() - Method in class jsat.classifiers.svm.PlattSMO
Returns the soft margin complexity parameter of the SVM
getC() - Method in class jsat.classifiers.svm.SVMnoBias
Returns the soft margin complexity parameter of the SVM
getC() - Method in class jsat.datatransform.FastICA
 
getC() - Method in class jsat.distributions.kernels.LinearKernel
Returns the positive additive term
getC() - Method in class jsat.distributions.kernels.PolynomialKernel
Returns the additive constant
getC() - Method in class jsat.distributions.kernels.RationalQuadraticKernel
Returns the positive additive coefficient
getC() - Method in class jsat.distributions.kernels.SigmoidKernel
Returns the additive constant
getC() - Method in class jsat.linear.vectorcollection.lsh.E2LSH
Returns the multiplier used on the radius that controls the degree of approximation.
getC1() - Method in class jsat.math.optimization.BacktrackingArmijoLineSearch
Returns the sufficient decrease condition constant
getC1() - Method in class jsat.math.optimization.WolfeNWLineSearch
Returns the sufficient decrease condition constant
getC2() - Method in class jsat.math.optimization.WolfeNWLineSearch
Returns the curvature condition constant
getC45Tree() - Static method in class jsat.classifiers.trees.DecisionTree
Returns a Decision Tree with settings initialized so that its behavior is approximately that of the C4.5 decision tree algorithm when used on classification data.
getCacheMode() - Method in class jsat.classifiers.svm.SupportVectorLearner
Returns the current caching mode in use
getCacheValue() - Method in class jsat.classifiers.svm.SupportVectorLearner
Returns the current cache value
getCalibrationFolds() - Method in class jsat.classifiers.calibration.BinaryCalibration
Returns the number of cross validation folds to use
getCalibrationHoldOut() - Method in class jsat.classifiers.calibration.BinaryCalibration
Returns the portion of the data set that will be held out for calibration
getCalibrationMode() - Method in class jsat.classifiers.calibration.BinaryCalibration
Returns the calibration mode used during training
getCallCount() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
getCategoricalData() - Method in class jsat.classifiers.DataPoint
Returns the array of Categorical Data information
getCategoricalValue(int) - Method in class jsat.classifiers.DataPoint
 
getCategoricalValues() - Method in class jsat.classifiers.DataPoint
Returns the array of values for each category.
getCategories() - Method in class jsat.DataSet
Returns the array containing the categorical data information for this data set.
getCategoryName() - Method in class jsat.classifiers.CategoricalData
 
getCategoryName(int) - Method in class jsat.DataSet
Returns the name used for the i'th categorical attribute.
getCentroids(DataSet, int, DistanceMetric, ExecutorService) - Method in enum jsat.classifiers.neuralnetwork.RBFNet.Phase1Learner
Obtains the centroids for the given data set
getChild(int) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
getChild(int) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns the node for the specific child, or null if the child index was not valid
getChildren(N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Returns the set of all children of the requested node, or null if the node does not exist in the graph.
getClassBudget() - Method in class jsat.classifiers.svm.extended.OnlineAMM
Returns the maximum number of hyperplanes allowed per class
getClassification(double) - Method in class jsat.lossfunctions.HingeLoss
 
getClassification(Vec) - Method in class jsat.lossfunctions.HingeLoss
 
getClassification(double) - Method in class jsat.lossfunctions.LogisticLoss
 
getClassification(double) - Method in interface jsat.lossfunctions.LossC
Given the score value of a data point, this returns the classification results.
getClassification(Vec) - Method in interface jsat.lossfunctions.LossMC
Given the processed predictions, returns the classification results for said predictions.
getClassification(Vec) - Method in class jsat.lossfunctions.SoftmaxLoss
 
getClassificationTargetScore() - Method in class jsat.parameters.ModelSearch
Returns the classification score that is trying to be optimized via grid search
getClassifier() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the classifier that was original given for evaluation.
getClassSize() - Method in class jsat.classifiers.ClassificationDataSet
Returns the number of target classes in this classification data set.
getClusterDesignations(int[], int) - Method in class jsat.clustering.hierarchical.NNChainHAC
Returns the assignment array for that would have been computed for the previous data set with the desired number of clusters.
getClusterDesignations(int, DataSet) - Method in class jsat.clustering.hierarchical.NNChainHAC
Returns the assignment array for that would have been computed for the previous data set with the desired number of clusters.
getClusterDesignations(int[], int) - Method in class jsat.clustering.hierarchical.PriorityHAC
Returns the assignment array for that would have been computed for the previous data set with the desired number of clusters.
getClusterDesignations(int) - Method in class jsat.clustering.hierarchical.PriorityHAC
Returns the assignment array for that would have been computed for the previous data set with the desired number of clusters.
getClusterSampleSize() - Method in class jsat.classifiers.svm.DCSVM
 
getCoefficents() - Method in class jsat.regression.LogisticRegression
Returns the backing vector that containing the learned coefficients for the logistic regression.
getCoefficient() - Method in class jsat.classifiers.boosting.ArcX4
Returns the coefficient use when re-weighting
getCoefficientVector(int) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the raw coefficient vector used without the bias term.
getColumn(int) - Method in class jsat.linear.Matrix
Creates a vector that has a copy of the values in column j of this matrix.
getColumnMeanVariance() - Method in class jsat.DataSet
Computes the weighted mean and variance for each column of feature values.
getColumnView(int) - Method in class jsat.linear.Matrix
Obtains a vector that is backed by this, at very little memory cost.
getColumnView(int) - Method in class jsat.linear.SubMatrix
 
getColumnView(int) - Method in class jsat.linear.TransposeView
 
getCondition() - Method in class jsat.linear.SingularValueDecomposition
Returns the condition number of the matrix.
getConfusionMatrix() - Method in class jsat.classifiers.ClassificationModelEvaluation
 
getConjugate() - Method in class jsat.math.Complex
Returns a new complex number representing the complex conjugate of this one
getConsensusSet() - Method in class jsat.regression.RANSAC
Returns an boolean array where the indices correspond to data points in the original training set.
getConstant() - Method in class jsat.classifiers.neuralnetwork.initializers.ConstantInit
 
getCorrectWeights() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the total value of the weights for data points that were classified correctly.
getCovMode() - Method in class jsat.classifiers.linear.NHERD
Returns the mode for forming the covariance
getCurrentVariableValues() - Method in class jsat.distributions.Beta
 
getCurrentVariableValues() - Method in class jsat.distributions.Cauchy
 
getCurrentVariableValues() - Method in class jsat.distributions.ChiSquared
 
getCurrentVariableValues() - Method in class jsat.distributions.ContinuousDistribution
Returns an array, where each value contains the value of a parameter in the distribution.
getCurrentVariableValues() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
getCurrentVariableValues() - Method in class jsat.distributions.Exponential
 
getCurrentVariableValues() - Method in class jsat.distributions.FisherSendor
 
getCurrentVariableValues() - Method in class jsat.distributions.Gamma
 
getCurrentVariableValues() - Method in class jsat.distributions.Kolmogorov
 
getCurrentVariableValues() - Method in class jsat.distributions.Laplace
 
getCurrentVariableValues() - Method in class jsat.distributions.Levy
 
getCurrentVariableValues() - Method in class jsat.distributions.Logistic
 
getCurrentVariableValues() - Method in class jsat.distributions.LogNormal
 
getCurrentVariableValues() - Method in class jsat.distributions.LogUniform
 
getCurrentVariableValues() - Method in class jsat.distributions.MaxwellBoltzmann
 
getCurrentVariableValues() - Method in class jsat.distributions.Normal
 
getCurrentVariableValues() - Method in class jsat.distributions.Pareto
 
getCurrentVariableValues() - Method in class jsat.distributions.Rayleigh
 
getCurrentVariableValues() - Method in class jsat.distributions.StudentT
 
getCurrentVariableValues() - Method in class jsat.distributions.TruncatedDistribution
 
getCurrentVariableValues() - Method in class jsat.distributions.Uniform
 
getCurrentVariableValues() - Method in class jsat.distributions.Weibull
 
getD() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
Returns the function object for the derivative of this activation function.
getD() - Method in class jsat.linear.EigenValueDecomposition
Return the block diagonal eigenvalue matrix
getD() - Method in class jsat.text.topicmodel.OnlineLDAsvi
Returns the approximate number of documents that will be observed, or -1 if this object is not ready to learn
getD(int) - Method in class jsat.utils.DoubleList
Operates exactly as DoubleList.get(int)
getDataMatrix() - Method in class jsat.DataSet
Creates a matrix from the data set, where each row represent a data point, and each column is one of the numeric example from the data set.
getDataMatrixView() - Method in class jsat.DataSet
Creates a matrix backed by the data set, where each row is a data point from the dataset, and each column is one of the numeric examples from the data set.
getDataPoint(int) - Method in class jsat.classifiers.ClassificationDataSet
Returns the i'th data point from the data set
getDataPoint() - Method in class jsat.classifiers.DataPointPair
 
getDataPoint(int) - Method in class jsat.DataSet
Returns the i'th data point in this set.
getDataPoint(int) - Method in class jsat.regression.RegressionDataSet
 
getDataPoint(int) - Method in class jsat.SimpleDataSet
 
getDataPointCategory(int) - Method in class jsat.classifiers.ClassificationDataSet
Returns the integer value corresponding to the true category of the i'th data point.
getDataPointIterator() - Method in class jsat.DataSet
Returns an iterator that will iterate over all data points in the set.
getDataPointPair(int) - Method in class jsat.classifiers.ClassificationDataSet
Returns the i'th data point from the data set, paired with the integer indicating its true class
getDataPointPair(int) - Method in class jsat.regression.RegressionDataSet
Returns the i'th data point in the data set paired with its target regressor value.
getDataPoints() - Method in class jsat.DataSet
Creates a list containing the same DataPoints in this set.
getDatapointsFromCluster(int, int[], DataSet, int[]) - Static method in class jsat.clustering.ClustererBase
Gets a list of the datapoints in a data set that belong to the indicated cluster
getDataSet() - Method in class jsat.text.ClassificationHashedTextDataLoader
 
getDataSet() - Method in class jsat.text.ClassificationTextDataLoader
 
getDataSet() - Method in class jsat.text.HashedTextDataLoader
Returns a new data set containing the original data points that were loaded with this loader.
getDataSet() - Method in class jsat.text.TextDataLoader
Returns a new data set containing the original data points that were loaded with this loader.
getDataVectors() - Method in class jsat.DataSet
Creates a list of the vectors values for each data point in the correct order.
getDataWeights() - Method in class jsat.DataSet
This method returns the weight of each data point in a single Vector.
getDefaultK() - Method in class jsat.distributions.multivariate.MetricKDE
Returns the default value of the k'th nearest neighbor to use when not specified.
getDefaultStndDev() - Method in class jsat.distributions.multivariate.MetricKDE
Returns the multiple of the standard deviations that is added to the bandwidth estimate
getDegree() - Method in class jsat.datatransform.PolynomialTransform
Returns the polynomial degree to use
getDegree() - Method in class jsat.distributions.kernels.PolynomialKernel
Returns the degree of the polynomial
getDelta() - Method in class jsat.driftdetectors.ADWIN
Returns the upper bound on false positives
getDeriv(double, double) - Method in class jsat.lossfunctions.AbsoluteLoss
 
getDeriv(double, double) - Method in class jsat.lossfunctions.EpsilonInsensitiveLoss
 
getDeriv(double, double) - Method in class jsat.lossfunctions.HingeLoss
 
getDeriv(double, double) - Method in class jsat.lossfunctions.HuberLoss
 
getDeriv(double, double) - Method in class jsat.lossfunctions.LogisticLoss
 
getDeriv(double, double) - Method in interface jsat.lossfunctions.LossC
Computes the first derivative of the getLoss function.
getDeriv(double, double) - Method in interface jsat.lossfunctions.LossFunc
Computes the first derivative of the loss function.
getDeriv(double, double) - Method in interface jsat.lossfunctions.LossR
Computes the first derivative of the getLoss function.
getDeriv(double, double) - Method in class jsat.lossfunctions.SquaredLoss
 
getDeriv2(double, double) - Method in class jsat.lossfunctions.AbsoluteLoss
 
getDeriv2(double, double) - Method in class jsat.lossfunctions.EpsilonInsensitiveLoss
 
getDeriv2(double, double) - Method in class jsat.lossfunctions.HingeLoss
 
getDeriv2(double, double) - Method in class jsat.lossfunctions.HuberLoss
 
getDeriv2(double, double) - Method in class jsat.lossfunctions.LogisticLoss
 
getDeriv2(double, double) - Method in interface jsat.lossfunctions.LossC
Computes the second derivative of the getLoss function.
getDeriv2(double, double) - Method in interface jsat.lossfunctions.LossFunc
Computes the second derivative of the getLoss function.
getDeriv2(double, double) - Method in interface jsat.lossfunctions.LossR
Computes the second derivative of the getLoss function.
getDeriv2(double, double) - Method in class jsat.lossfunctions.SquaredLoss
 
getDeriv2Max() - Method in class jsat.lossfunctions.AbsoluteLoss
 
getDeriv2Max() - Method in class jsat.lossfunctions.EpsilonInsensitiveLoss
 
getDeriv2Max() - Method in class jsat.lossfunctions.HingeLoss
 
getDeriv2Max() - Method in class jsat.lossfunctions.HuberLoss
 
getDeriv2Max() - Method in class jsat.lossfunctions.LogisticLoss
 
getDeriv2Max() - Method in interface jsat.lossfunctions.LossFunc
Returns an upper bound on the maximum value of the second derivative.
getDeriv2Max() - Method in class jsat.lossfunctions.SquaredLoss
 
getDerivative() - Method in class jsat.math.optimization.RosenbrockFunction
Returns the gradient of the Rosenbrock function
getDescriptiveName() - Method in class jsat.distributions.ContinuousDistribution
The descriptive name of a distribution returns the name of the distribution, followed by the parameters of the distribution and their values.
getDescriptiveName() - Method in class jsat.distributions.Exponential
 
getDescriptiveName() - Method in class jsat.distributions.Normal
 
getDescriptiveName() - Method in class jsat.distributions.StudentT
 
getDet() - Method in class jsat.linear.CholeskyDecomposition
Computes the determinant of A
getDimension() - Method in class jsat.datatransform.kernel.Nystrom
Returns the number of dimensions to project down too
getDimension() - Method in class jsat.distributions.multivariate.SymmetricDirichlet
Returns the dimension size of the current distribution
getDimensions() - Method in class jsat.datatransform.kernel.KernelPCA
Returns the number of dimensions to project down too
getDimensions() - Method in class jsat.datatransform.kernel.RFF_RBF
Returns the number of dimensions that will be used in the projected space
getDimensions() - Method in class jsat.datatransform.WhitenedPCA
Returns the number of dimensions to project down to
getDimensionSize() - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
Returns the number of dimensions in the CPT
getDistance(double[][], int, int) - Static method in class jsat.clustering.dissimilarity.AbstractClusterDissimilarity
A convenience method.
getDistanceMetric() - Method in class jsat.classifiers.knn.LWL
Returns the distance metric in use
getDistanceMetric() - Method in class jsat.classifiers.knn.NearestNeighbour
 
getDistanceMetric() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the distance metric to use
getDistanceMetric() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns the distance metric in use
getDistanceMetric() - Method in class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
 
getDistanceMetric() - Method in class jsat.clustering.FLAME
Returns the distance metric to use for the nearest neighbor search
getDistanceMetric() - Method in class jsat.clustering.GapStatistic
 
getDistanceMetric() - Method in class jsat.clustering.kmeans.KMeans
Returns the distance metric in use
getDistanceMetric() - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Returns the distance metric used for determining the nearest cluster center
getDistanceMetric() - Method in class jsat.clustering.OPTICS
Returns the distance metric used to compute distances in the algorithm.
getDistanceMetric() - Method in class jsat.datatransform.featureselection.ReliefF
Returns the distance metric to use
getDistanceMetric() - Method in class jsat.distributions.multivariate.MetricKDE
Returns the distance metric that is used for density estimation
getDistanceMetric() - Method in class jsat.linear.vectorcollection.VectorArray
 
getDistanceMetrics() - Method in class jsat.clustering.HDBSCAN
 
getDistribution() - Method in class jsat.classifiers.boosting.Wagging
Returns the distribution used for weight sampling
getDistribution() - Method in class jsat.classifiers.boosting.WaggingNormal
 
getDistributionName() - Method in class jsat.distributions.Beta
 
getDistributionName() - Method in class jsat.distributions.Cauchy
 
getDistributionName() - Method in class jsat.distributions.ChiSquared
 
getDistributionName() - Method in class jsat.distributions.ContinuousDistribution
Return the name of the distribution.
getDistributionName() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
getDistributionName() - Method in class jsat.distributions.Exponential
 
getDistributionName() - Method in class jsat.distributions.FisherSendor
 
getDistributionName() - Method in class jsat.distributions.Gamma
 
getDistributionName() - Method in class jsat.distributions.Kolmogorov
 
getDistributionName() - Method in class jsat.distributions.Laplace
 
getDistributionName() - Method in class jsat.distributions.Levy
 
getDistributionName() - Method in class jsat.distributions.Logistic
 
getDistributionName() - Method in class jsat.distributions.LogNormal
 
getDistributionName() - Method in class jsat.distributions.LogUniform
 
getDistributionName() - Method in class jsat.distributions.MaxwellBoltzmann
 
getDistributionName() - Method in class jsat.distributions.Normal
 
getDistributionName() - Method in class jsat.distributions.Pareto
 
getDistributionName() - Method in class jsat.distributions.Rayleigh
 
getDistributionName() - Method in class jsat.distributions.StudentT
 
getDistributionName() - Method in class jsat.distributions.TruncatedDistribution
 
getDistributionName() - Method in class jsat.distributions.Uniform
 
getDistributionName() - Method in class jsat.distributions.Weibull
 
getDPPList() - Method in class jsat.regression.RegressionDataSet
Returns a new list containing the data points in this data set, paired with their regression target values.
getDriftAge() - Method in class jsat.driftdetectors.BaseDriftDetector
Returns the number of items in recent history that differed from the historical values, or -1 if there has not been any detected drift.
getDriftedHistory() - Method in class jsat.driftdetectors.BaseDriftDetector
Returns a new list containing up to BaseDriftDetector.getMaxHistory() objects in the history that drifted away from the prior state of the model.
getDriftThreshold() - Method in class jsat.driftdetectors.DDM
Returns the threshold multiple for controlling the false positive / negative rate on detecting changes.
getDropoutHidden() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getDropoutInput() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getElogW() - Method in class jsat.clustering.GapStatistic
Returns the array of expected E[log(Wk)] scores computed from sampling new data sets.
getElogWkStndDev() - Method in class jsat.clustering.GapStatistic
Returns the array of standard deviations from the samplings used to compute GapStatistic.getElogWkStndDev(), multiplied by sqrt(1+1/B).
getEmbeddingMetric() - Method in class jsat.datatransform.visualization.MDS
 
getEndBlock(int, int, int) - Static method in class jsat.utils.concurrent.ParallelUtils
Gets the ending index (exclusive) for splitting up a list of items into P evenly sized blocks.
getEndBlock(int, int) - Static method in class jsat.utils.concurrent.ParallelUtils
Gets the ending index (exclusive) for splitting up a list of items into SystemInfo.LogicalCores evenly sized blocks.
getEndLevel() - Method in class jsat.classifiers.svm.DCSVM
 
getEntropyThreshold() - Method in class jsat.classifiers.svm.extended.CPM
 
getEpochs() - Method in class jsat.classifiers.BaseUpdateableClassifier
Returns the number of epochs used for training
getEpochs() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Returns the number of passes through the data set
getEpochs() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the number of epochs to use
getEpochs() - Method in class jsat.classifiers.linear.PassiveAggressive
Returns the number of epochs used for training
getEpochs() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the maximum number of epochs
getEpochs() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns the number of iterations of updating that will be done
getEpochs() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the number of epochs of training epochs for learning
getEpochs() - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
getEpochs() - Method in class jsat.classifiers.svm.extended.CPM
Returns the number of epochs used for training
getEpochs() - Method in class jsat.classifiers.svm.Pegasos
Returns the number of iterations of updating that will be done
getEpochs() - Method in class jsat.regression.BaseUpdateableRegressor
Returns the number of epochs used for training
getEpochs() - Method in class jsat.regression.StochasticRidgeRegression
Returns the number of training iterations
getEpochs() - Method in class jsat.text.topicmodel.OnlineLDAsvi
Returns the number of training iterations over the data set that will be used
getEps() - Method in class jsat.classifiers.linear.PassiveAggressive
Returns the maximum acceptable difference in prediction and truth
getEps() - Method in class jsat.classifiers.svm.DCD
Returns the epsilon insensitivity parameter used in regression problems.
getEps() - Method in class jsat.classifiers.svm.DCDs
Returns the epsilon insensitivity parameter used in regression problems.
getEps() - Method in class jsat.clustering.FLAME
Returns the minimum difference in scores to consider FLAME converged
getEps() - Method in class jsat.math.optimization.ModifiedOWLQN
 
getEpsilon() - Method in class jsat.classifiers.knn.DANN
Returns the regularization parameter that is applied to the diagonal of the matrix when creating each new metric.
getEpsilon() - Method in class jsat.classifiers.svm.PlattSMO
Returns the epsilon insensitive loss value
getEpsilonDistance() - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the epsilon scale distance between learning vectors that may be allowed to two at a time.
getErrorRate() - Method in class jsat.classifiers.ClassificationModelEvaluation
Computes the weighted error rate of the classifier.
getErrorRateStats() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the object that keeps track of the error on individual evaluations.
getErrorStndDev() - Method in class jsat.regression.RegressionModelEvaluation
Returns the standard deviation of the error from all runs
getErrorTolerance() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the error tolerance that would be used
getErrorTolerance() - Method in class jsat.distributions.kernels.KernelPoint
Returns the error tolerance that is used depending on the KernelPoint.BudgetStrategy in use
getErrorTolerance() - Method in class jsat.distributions.kernels.KernelPoints
Returns the error tolerance that is used depending on the KernelPoint.BudgetStrategy in use
getErrorTolerance() - Method in class jsat.regression.KernelRLS
Returns the projection approximation tolerance
getEta() - Method in class jsat.classifiers.linear.kernelized.BOGD
Returns the learning rate in use
getEta() - Method in class jsat.classifiers.linear.kernelized.CSKLR
Returns the learning rate to use
getEta() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Returns the learning rate to use
getEta() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the base learning rate
getEta() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns the learning rate in use
getEta() - Method in class jsat.classifiers.linear.kernelized.Projectron
Returns the sparsity parameter value
getEta() - Method in class jsat.classifiers.linear.LinearSGD
Returns the current learning rate in use
getEta() - Method in class jsat.classifiers.linear.SCW
Returns the target correction confidence
getEta() - Method in class jsat.classifiers.linear.SMIDAS
Returns the current learning rate used during training
getEta() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getEta() - Method in class jsat.text.topicmodel.OnlineLDAsvi
 
getEtaDecay() - Method in class jsat.classifiers.linear.LinearSGD
Returns the decay rate in use
getEtaDecay() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getExponent() - Method in class jsat.classifiers.boosting.ArcX4
Returns the exponent used when re-weighting
getExtractionMethod() - Method in class jsat.clustering.OPTICS
Returns the method used to extract clusters from the reachability plot.
getExtraSamples() - Method in class jsat.classifiers.boosting.Bagging
 
getExtraSamples() - Method in class jsat.classifiers.trees.RandomForest
 
getFaultException() - Method in exception jsat.exceptions.FailedToFitException
Returns the exception that caused the issue.
getFeatureCount() - Method in class jsat.datatransform.featureselection.BDS
Returns the number of features to use
getFeatureCount() - Method in class jsat.datatransform.featureselection.MutualInfoFS
Returns the number of features to select
getFeatureCount() - Method in class jsat.datatransform.featureselection.ReliefF
Returns the number of features to sue
getFeatureImportance() - Method in class jsat.classifiers.trees.RandomForest
Random Forest can obtain an unbiased estimate of feature importance using a TreeFeatureImportanceInference method on the out-of-bag samples during training.
getFeaturesToAdd() - Method in class jsat.datatransform.featureselection.LRS
Returns the number of features to add
getFeaturesToRemove() - Method in class jsat.datatransform.featureselection.LRS
Returns the number of features to remove
getFirstColumn() - Method in class jsat.linear.SubMatrix
Returns the column offset used from the base matrix
getFirstItem() - Method in class jsat.utils.Pair
 
getFirstItem() - Method in class jsat.utils.PairedReturn
Returns the first object stored.
getFirstRow() - Method in class jsat.linear.SubMatrix
Returns the row offset used from the base matrix
getfKs() - Method in class jsat.clustering.kmeans.KMeansPDN
Returns the array of f(K) values generated for the last data set.
getFolds() - Method in class jsat.classifiers.boosting.Stacking
 
getFolds() - Method in class jsat.datatransform.featureselection.BDS
 
getFolds() - Method in class jsat.datatransform.featureselection.LRS
 
getFolds() - Method in class jsat.datatransform.featureselection.SBS
 
getFolds() - Method in class jsat.datatransform.featureselection.SFS
 
getForrestSize() - Method in class jsat.classifiers.trees.ERTrees
 
getFunctionCDF(Distribution) - Static method in class jsat.distributions.Distribution
Wraps the Distribution.cdf(double) function of the given distribution in a function object for use.
getFunctionPDF(ContinuousDistribution) - Static method in class jsat.distributions.ContinuousDistribution
Wraps the ContinuousDistribution.pdf(double) function of the given distribution in a function object for use.
getG() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns the sparsification parameter
getGain(ImpurityScore, List<List<DataPointPair<Integer>>>) - Method in class jsat.classifiers.trees.DecisionStump
From the score for the original set that is being split, this computes the gain as the improvement in classification from the original split.
getGainMethod() - Method in class jsat.classifiers.trees.DecisionStump
 
getGainMethod() - Method in class jsat.classifiers.trees.DecisionTree
 
getGamma() - Method in class jsat.classifiers.linear.kernelized.CSKLR
Returns the gamma sparsity parameter value
getGamma() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Returns the gamma sparsity parameter value
getGamma() - Method in class jsat.datatransform.visualization.LargeViz
 
getGap() - Method in class jsat.clustering.GapStatistic
Returns the array of gap statistic values.
getGradientUpdater() - Method in class jsat.classifiers.linear.LinearSGD
 
getGradientUpdater() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getGravity() - Method in class jsat.classifiers.linear.STGD
Returns the regularization parameter
getGuess(DataSet) - Method in class jsat.parameters.DoubleParameter
This method allows one to obtain a distribution that represents a reasonable "guess" at the range of values that would work for this parameter.
getGuess(DataSet) - Method in class jsat.parameters.IntParameter
This method allows one to obtain a distribution that represents a reasonable "guess" at the range of values that would work for this parameter.
getH(double, double, double) - Static method in class jsat.distributions.kernels.KernelPoint
Gets the minimum of H in [0, 1] the for RBF merging
amkmn(1-h)^2 + ankmnh^2
.
getHandling() - Method in class jsat.datatransform.featureselection.MutualInfoFS
Returns the method of numericHandling numeric features
getHiddenSizes() - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
getI(int) - Method in class jsat.utils.IntList
Operates exactly as IntList.get(int)
getImag() - Method in class jsat.math.Complex
Returns the imaginary part of this complex number
getImagEigenvalues() - Method in class jsat.linear.EigenValueDecomposition
Return the imaginary parts of the eigenvalues
getImportanceStats(TreeLearner, DataSet<Type>) - Method in class jsat.classifiers.trees.ImportanceByUses
 
getImportanceStats(TreeLearner, DataSet<Type>) - Method in class jsat.classifiers.trees.MDA
 
getImportanceStats(TreeLearner, DataSet<Type>) - Method in class jsat.classifiers.trees.MDI
 
getImportanceStats(TreeLearner, DataSet<Type>) - Method in interface jsat.classifiers.trees.TreeFeatureImportanceInference
 
getImpurityMeasure() - Method in class jsat.classifiers.trees.ExtraTree
Returns the impurity measure in use
getImpurityMeasure() - Method in class jsat.classifiers.trees.ImpurityScore
Returns the impurity measure being used
getIndex() - Method in class jsat.linear.IndexValue
Returns the index of the stored value
getInitialLearningRate() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the current initial learning rate
getInitialLearningRate() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the learning rate used
getInitialLearningRate() - Method in class jsat.classifiers.neuralnetwork.SOM
Returns the rate at which input is incorporated at each iteration of the SOM
getInitialTrainSize() - Method in class jsat.regression.RANSAC
Returns the number of data points to be sampled from the training set to create initial models.
getInstance() - Static method in class jsat.distributions.empirical.kernelfunc.BiweightKF
Returns the singleton instance of this class
getInstance() - Static method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
Returns the singleton instance of this class
getInstance() - Static method in class jsat.distributions.empirical.kernelfunc.GaussKF
Returns the singleton instance of this class
getInstance() - Static method in class jsat.distributions.empirical.kernelfunc.TriweightKF
Returns the singleton instance of this class
getInstance() - Static method in class jsat.distributions.empirical.kernelfunc.UniformKF
Returns the singleton instance of this class
getIntegrationMax() - Method in class jsat.distributions.ContinuousDistribution
 
getIntegrationMin() - Method in class jsat.distributions.ContinuousDistribution
 
getInverseSingularValues() - Method in class jsat.linear.SingularValueDecomposition
Returns an array containing the inverse singular values.
getInverseSingularValues(double) - Method in class jsat.linear.SingularValueDecomposition
Returns an array containing the inverse singular values.
getItem() - Method in class jsat.utils.UnionFind
 
getIterationLimit() - Method in class jsat.clustering.EMGaussianMixture
Returns the maximum number of iterations of the ElkanKMeans algorithm that will be performed.
getIterationLimit() - Method in class jsat.clustering.kmeans.GMeans
 
getIterationLimit() - Method in class jsat.clustering.kmeans.KMeans
Returns the maximum number of iterations of the ElkanKMeans algorithm that will be performed.
getIterationLimit() - Method in class jsat.clustering.kmeans.XMeans
 
getIterations() - Method in class jsat.classifiers.boosting.ArcX4
Returns the number of iterations to learn
getIterations() - Method in class jsat.classifiers.boosting.Wagging
Returns the number of iterations to create weak learners
getIterations() - Method in class jsat.classifiers.linear.SCD
Returns the number of iterations used
getIterations() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the number of iterations of the algorithm to apply
getIterations() - Method in class jsat.classifiers.svm.PegasosK
Returns the number of iterations used during training
getIterations() - Method in class jsat.classifiers.svm.SBP
Returns the number of iterations the algorithm will perform
getIterations() - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Returns the number of mini-batch iterations used
getIterations() - Method in class jsat.datatransform.featureselection.ReliefF
Returns the number of iterations to use
getIterations() - Method in class jsat.datatransform.visualization.TSNE
 
getIterations() - Method in class jsat.regression.RANSAC
Returns the number models that will be tested on the data set.
getIterativeRefine() - Method in class jsat.clustering.kmeans.GMeans
 
getIterativeRefine() - Method in class jsat.clustering.kmeans.XMeans
 
getK() - Method in class jsat.classifiers.knn.DANN
Returns the number of nearest neighbors to use when predicting
getK() - Method in class jsat.classifiers.linear.STGD
Returns the frequency of regularization application
getK() - Method in class jsat.classifiers.svm.extended.CPM
 
getK() - Method in class jsat.clustering.FLAME
Returns the number of neighbors used
getK() - Method in class jsat.text.topicmodel.OnlineLDAsvi
Returns the number of topics to learn, or -1 if this object is not ready to learn
getKappa() - Method in class jsat.text.topicmodel.OnlineLDAsvi
 
getKeptModels() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the models that were kept after the last evaluation.
getKeptModels() - Method in class jsat.regression.RegressionModelEvaluation
Returns the models that were kept after the last evaluation.
getKeptNominal() - Method in class jsat.datatransform.RemoveAttributeTransform
Returns an unmodifiable list of the original indices of the nominal attributes that will be kept when this transform is applied.
getKeptNumeric() - Method in class jsat.datatransform.RemoveAttributeTransform
Returns an unmodifiable list of the original indices of the numeric attributes that will be kept when this transform is applied.
getKernel() - Method in class jsat.classifiers.linear.kernelized.BOGD
Returns the kernel to use
getKernel() - Method in class jsat.classifiers.linear.kernelized.CSKLR
Returns the kernel trick in use
getKernel() - Method in class jsat.classifiers.linear.kernelized.DUOL
Returns the kernel trick in use
getKernel() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the kernel in use
getKernel() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns the kernel to use
getKernel() - Method in class jsat.classifiers.linear.kernelized.Projectron
Returns the kernel trick in use
getKernel() - Method in class jsat.classifiers.svm.SupportVectorLearner
 
getKernel() - Method in class jsat.datatransform.kernel.KernelPCA
 
getKernel() - Method in class jsat.datatransform.kernel.Nystrom
 
getKernel() - Method in class jsat.distributions.kernels.KernelPoints
 
getKernel() - Method in class jsat.regression.KernelRidgeRegression
Returns the kernel in use
getKernelFunction() - Method in class jsat.classifiers.knn.LWL
Returns the kernel function that will be used to set the weights.
getKernelFunction() - Method in class jsat.distributions.multivariate.MetricKDE
 
getKernelFunction() - Method in class jsat.distributions.multivariate.MultivariateKDE
 
getKernelFunction() - Method in class jsat.distributions.multivariate.ProductKDE
 
getKernelTrick() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Returns the kernel in use
getKernelTrick() - Method in class jsat.classifiers.linear.kernelized.Forgetron
Returns the current kernel trick
getKn() - Method in class jsat.classifiers.knn.DANN
Returns the number of nearest neighbors to use when adapting the distance metric
getKthNeighborStats(VectorCollection<V0>, List<V1>, int) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
getKthNeighborStats(VectorCollection<V0>, V1[], int) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
getKthNeighborStats(VectorCollection<V0>, List<V1>, int, ExecutorService) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
getKthNeighborStats(VectorCollection<V0>, V1[], int, ExecutorService) - Static method in class jsat.linear.vectorcollection.VectorCollectionUtils
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
getKurtosis() - Method in class jsat.math.OnLineStatistics
 
getL() - Method in class jsat.linear.vectorcollection.lsh.E2LSH
Returns how many separate hash tables have been created for this distance metric.
getL(int) - Method in class jsat.utils.LongList
Operates exactly as LongList.get(int)
getLambda() - Method in class jsat.classifiers.boosting.EmphasisBoost
Returns the value of the λ trade off parameter
getLambda() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the L2 regularization parameter
getLambda() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns the amount of regularization to used in training
getLambda() - Method in class jsat.classifiers.svm.extended.CPM
 
getLambda() - Method in class jsat.classifiers.svm.extended.OnlineAMM
Returns the regularization parameter
getLambda() - Method in class jsat.distributions.discrete.Poisson
 
getLambda() - Method in class jsat.regression.KernelRidgeRegression
Returns the regularization constant in use
getLambda() - Method in class jsat.regression.RidgeRegression
Returns the regularization constant in use
getLambda() - Method in class jsat.regression.StochasticRidgeRegression
Returns the regularization constant in use
getLambda0() - Method in class jsat.classifiers.linear.LinearBatch
Returns the L2 regularization term in use
getLambda0() - Method in class jsat.classifiers.linear.LinearSGD
Returns the L2 regularization term in use
getLambda1() - Method in class jsat.classifiers.linear.LinearSGD
Returns the L1 regularization term in use
getLambdaMultipler() - Method in class jsat.math.optimization.ModifiedOWLQN
 
getLastNonZeroIndex() - Method in class jsat.linear.SparseVector
Returns the index of the last non-zero value, or -1 if all values are zero.
getLayerSizes() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getLearningDecay() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the method used to decay the learning rate over each iteration
getLearningDecay() - Method in class jsat.classifiers.neuralnetwork.SOM
The rate the SOM learns decays over each iteration, and this defines the way in which the rate decays.
getLearningDecay() - Method in class jsat.regression.StochasticRidgeRegression
Returns the learning decay rate used
getLearningRate() - Method in class jsat.classifiers.linear.STGD
Returns the learning rate to use
getLearningRate() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the learning rate at which to apply updates during the algorithm.
getLearningRate() - Method in class jsat.regression.StochasticGradientBoosting
Returns the learning rate of the algorithm used to control overfitting.
getLearningRate() - Method in class jsat.regression.StochasticRidgeRegression
Returns the learning rate in use.
getLearningRateDecay() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the decay rate in use
getLearningRateDecay() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the decay rate used to adjust the learning rate after each epoch
getLineSearch() - Method in class jsat.math.optimization.BFGS
Returns the line search method used at each iteration
getLineSearch() - Method in class jsat.math.optimization.LBFGS
Returns the line search method used at each iteration
getListOfLists(int) - Static method in class jsat.clustering.kmeans.KMeans
 
getLocalClassifier() - Method in class jsat.classifiers.neuralnetwork.LVQLLC
Returns the classifier used for each prototype
getLocation() - Method in class jsat.distributions.Cauchy
 
getLocation() - Method in class jsat.distributions.Levy
Returns the location parameter used by this distribution.
getLogPrb(int[], int) - Method in class jsat.classifiers.bayesian.ODE
 
getLogW() - Method in class jsat.clustering.GapStatistic
Returns the array of empirical log(Wk) scores computed from the data set last clustered.
getLoss() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Returns the loss function in use
getLoss() - Method in class jsat.classifiers.linear.LinearBatch
Returns the loss function in use
getLoss() - Method in class jsat.classifiers.linear.LinearSGD
Returns the loss function in use
getLoss() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
returns the loss function in use
getLoss(double, double) - Method in class jsat.lossfunctions.AbsoluteLoss
 
getLoss(double, double) - Method in class jsat.lossfunctions.EpsilonInsensitiveLoss
 
getLoss(double, double) - Method in class jsat.lossfunctions.HingeLoss
 
getLoss(Vec, int) - Method in class jsat.lossfunctions.HingeLoss
 
getLoss(double, double) - Method in class jsat.lossfunctions.HuberLoss
 
getLoss(double, double) - Method in class jsat.lossfunctions.LogisticLoss
 
getLoss(double, double) - Method in interface jsat.lossfunctions.LossC
Computes the getLoss for a classification problem.
getLoss(double, double) - Method in interface jsat.lossfunctions.LossFunc
Computes the loss for some problem.
getLoss(Vec, int) - Method in interface jsat.lossfunctions.LossMC
Computes the scalar loss for on the given example
getLoss(double, double) - Method in interface jsat.lossfunctions.LossR
Computes the getLoss for a regression problem.
getLoss(Vec, int) - Method in class jsat.lossfunctions.SoftmaxLoss
 
getLoss(double, double) - Method in class jsat.lossfunctions.SquaredLoss
 
getLT() - Method in class jsat.linear.CholeskyDecomposition
The Cholesky Decomposition computes the factorization A = L LT.
getLVQMethod() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the version of the LVQ algorithm to use.
getM() - Method in class jsat.classifiers.bayesian.AODE
Returns the minimum needed score
getM() - Method in class jsat.driftdetectors.ADWIN
Returns the accuracy / speed parameter for ADWIN
getM() - Method in class jsat.math.optimization.LBFGS
Returns the number of history items that will be used
getM() - Method in class jsat.math.optimization.ModifiedOWLQN
Returns the number of history items that will be used
getMagnitude() - Method in class jsat.math.Complex
Computes the magnitude of this complex number, which is sqrt(Re2+Im2)
getMatch() - Method in class jsat.utils.ProbailityMatch
 
getMatrixOfSameType(int, int) - Method in class jsat.linear.DenseMatrix
 
getMatrixOfSameType(int, int) - Method in class jsat.linear.GenericMatrix
Creates a new matrix of the same type
getMatrixOfSameType(int, int) - Method in class jsat.linear.MatrixOfVecs
 
getMatrixOfSameType(int, int) - Method in class jsat.linear.RandomMatrix
 
getMatrixOfSameType(int, int) - Method in class jsat.linear.SubMatrix
 
getMatrixOfSameType(int, int) - Method in class jsat.linear.TransposeView
 
getMax() - Method in class jsat.distributions.discrete.UniformDiscrete
 
getMax() - Method in class jsat.math.OnLineStatistics
 
getMaxBudget() - Method in class jsat.distributions.kernels.KernelPoint
Returns the current maximum budget for support vectors
getMaxBudget() - Method in class jsat.distributions.kernels.KernelPoints
Returns the current maximum budget for support vectors
getMaxCoeff() - Method in class jsat.classifiers.linear.kernelized.BOGD
Returns the maximum allowed value for any support vector
getMaxDecrease() - Method in class jsat.datatransform.featureselection.SBS
Returns the maximum allowable decrease in accuracy from one set of features to the next
getMaxDepth() - Method in class jsat.classifiers.trees.DecisionTree
The maximum depth that this classifier may build trees to.
getMaxError() - Method in class jsat.regression.RegressionModelEvaluation
Returns the maximum squared error observed from all runs.
getMaxFeatures() - Method in class jsat.datatransform.featureselection.SBS
Returns the maximum number of features to find
getMaxFeatures() - Method in class jsat.datatransform.featureselection.SFS
Returns the maximum number of features to find
getMaxForestSize() - Method in class jsat.classifiers.trees.RandomForest
Returns the number of rounds of boosting that will be done, which is also the number of base learners that will be trained
getMaxHistory() - Method in class jsat.driftdetectors.BaseDriftDetector
Returns the maximum number of items that will be kept in the history.
getMaximumIterations() - Method in class jsat.clustering.kmeans.KernelKMeans
Returns the maximum number of iterations of the KMeans algorithm that will be performed.
getMaximumIterations() - Method in class jsat.math.optimization.BFGS
 
getMaximumIterations() - Method in class jsat.math.optimization.LBFGS
 
getMaximumIterations() - Method in class jsat.math.optimization.ModifiedOWLQN
 
getMaximumIterations() - Method in interface jsat.math.optimization.Optimizer2
Returns the maximum number of iterations to perform
getMaxIncrease() - Method in class jsat.datatransform.featureselection.SFS
 
getMaxIterations() - Method in class jsat.classifiers.boosting.AdaBoostM1
Returns the maximum number of iterations used
getMaxIterations() - Method in class jsat.classifiers.boosting.EmphasisBoost
Returns the maximum number of iterations used
getMaxIterations() - Method in class jsat.classifiers.boosting.LogitBoost
The maximum number of iterations of boosting that may occur.
getMaxIterations() - Method in class jsat.classifiers.boosting.ModestAdaBoost
Returns the maximum number of iterations used
getMaxIterations() - Method in class jsat.classifiers.knn.DANN
Returns the number of times the distance metric will be updated.
getMaxIterations() - Method in class jsat.classifiers.linear.BBR
Returns the maximum number of iterations allowed
getMaxIterations() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Returns the maximum number of iterations the algorithm is allowed to run
getMaxIterations() - Method in class jsat.classifiers.neuralnetwork.SOM
Returns the maximum number of iterations that will be used to converge
getMaxIterations() - Method in class jsat.classifiers.svm.DCD
Returns the maximum number of allowed training epochs
getMaxIterations() - Method in class jsat.classifiers.svm.DCDs
Returns the maximum number of allowed training epochs
getMaxIterations() - Method in class jsat.classifiers.svm.PlattSMO
Returns the maximum number of iterations
getMaxIterations() - Method in class jsat.clustering.FLAME
Returns the maximum number of iterations to perform
getMaxIterations() - Method in class jsat.clustering.MeanShift
Returns the maximum number of iterations the algorithm will go through, terminating early if convergence has not occurred.
getMaxIterations() - Method in class jsat.clustering.PAM
 
getMaxIterations() - Method in class jsat.regression.StochasticGradientBoosting
Returns the maximum number of iterations used in SGB
getMaxIters() - Method in class jsat.classifiers.linear.NewGLMNET
 
getMaxLeafSize() - Method in class jsat.linear.vectorcollection.VPTree
Returns the maximum leaf node size.
getMaxNorm() - Method in class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
 
getMaxParents() - Method in class jsat.classifiers.bayesian.graphicalmodel.K2NetworkLearner
Returns the maximum number of parents allowed when learning a network structure, or zero if any number of parents are valid.
getMaxPCs() - Method in class jsat.datatransform.PCA
 
getMaxPointError() - Method in class jsat.regression.RANSAC
Each data point not in the initial training set will be tested against.
getMaxScaled() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns the maximum feature value after scaling
getMaxSize() - Method in class jsat.utils.BoundedSortedSet
Returns the maximum size allowed for the bounded set
getMaxTime() - Method in class jsat.math.decayrates.ExponetialDecay
Returns the maximum time to use in the rate decay
getMaxTime() - Method in class jsat.math.decayrates.LinearDecay
Returns the maximum time to use in the rate decay
getMaxTokenLength() - Method in class jsat.text.tokenizer.NaiveTokenizer
Returns the maximum allowed token length
getMean() - Method in class jsat.classifiers.boosting.WaggingNormal
Returns the mean value used for the normal distribution
getMean() - Method in class jsat.driftdetectors.ADWIN
Returns the mean value for all inputs contained in the current window
getMean() - Method in class jsat.math.ExponentialMovingStatistics
 
getMean() - Method in class jsat.math.OnLineStatistics
 
getMeanError() - Method in class jsat.regression.RegressionModelEvaluation
Returns the mean squared error from all runs.
getMeans() - Method in class jsat.clustering.kmeans.KMeans
Returns the raw list of means that were used for each class.
getMeans() - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Returns the raw list of means that were used for each class.
getMeasurementError() - Method in class jsat.regression.OrdinaryKriging
Returns the measurement error used for Kriging, which is equivalent to altering the diagonal values of the covariance.
getMedoids() - Method in class jsat.clustering.PAM
Returns the raw array of indices that indicate which data point acted as the center for each cluster.
getMethod(DataSet<Type>, JSATData.FloatStorageMethod) - Static method in enum jsat.io.JSATData.FloatStorageMethod
 
getMetric() - Method in class jsat.parameters.MetricParameter
Returns the distance metric that was used for this learner
getMin() - Method in class jsat.distributions.discrete.UniformDiscrete
 
getMin() - Method in class jsat.math.OnLineStatistics
 
getMinClusterSize() - Method in class jsat.clustering.HDBSCAN
 
getMinClusterSize() - Method in class jsat.clustering.kmeans.GMeans
 
getMinClusterSize() - Method in class jsat.clustering.kmeans.XMeans
 
getMinError() - Method in class jsat.regression.RegressionModelEvaluation
Returns the minimum squared error from all runs.
getMinFeatures() - Method in class jsat.datatransform.featureselection.SBS
Returns the minimum number of features to find
getMinFeatures() - Method in class jsat.datatransform.featureselection.SFS
Returns the minimum number of features to find
getMiniBatchSize() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the number of data points used to perform each gradient update
getMinimumOccurrenceDTF(int) - Method in class jsat.text.TextDataLoader
Creates a new transform factory to remove all features for tokens that did not occur a certain number of times
getMinKey() - Method in class jsat.utils.FibHeap
 
getMinPoints() - Method in class jsat.clustering.HDBSCAN
 
getMinPts() - Method in class jsat.clustering.OPTICS
Sets the minimum number of points needed to compute the core distance.
getMinRate() - Method in class jsat.math.decayrates.ExponetialDecay
Returns the minimum value to return from he rate methods
getMinRate() - Method in class jsat.math.decayrates.LinearDecay
Returns the minimum value to return from he rate methods
getMinResultSize() - Method in class jsat.regression.RANSAC
RANSAC requires an initial model to be accurate enough to include a minimum number of inliers before being considered as a potentially good model.
getMinResultSplitSize() - Method in class jsat.classifiers.trees.DecisionStump
Returns the minimum result split size that may be considered for use as the attribute to split on.
getMinResultSplitSize() - Method in class jsat.classifiers.trees.DecisionTree
Returns the minimum result split size that may be considered for use as the attribute to split on.
getMinSamples() - Method in class jsat.classifiers.trees.DecisionTree
The minimum number of samples needed at each step in order to continue branching
getMinScaled() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns the minimum feature value after scaling
getMinTokenLength() - Method in class jsat.text.tokenizer.NaiveTokenizer
Returns the minimum allowed token length
getMinValue() - Method in class jsat.utils.FibHeap
 
getMissingDropped() - Method in class jsat.DataSet
This method returns a dataset that is a subset of this dataset, where only the rows that have no missing values are kept.
getMode() - Method in class jsat.classifiers.linear.kernelized.CSKLR
Returns the update mode in use
getMode() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Returns the update mode in use
getMode() - Method in class jsat.classifiers.linear.PassiveAggressive
Returns which version of the PA update is used
getMode() - Method in class jsat.classifiers.linear.SCW
Returns which algorithm is used
getMode() - Method in class jsat.classifiers.linear.SPA
Returns which version of the PA update is used
getMode() - Method in class jsat.datatransform.JLTransform
 
getModelError() - Method in class jsat.regression.RANSAC
Returns the model error, which is the average absolute difference between the model and all points in the set of inliers.
getModels() - Method in class jsat.classifiers.boosting.AdaBoostM1
 
getModels() - Method in class jsat.classifiers.boosting.EmphasisBoost
 
getModels() - Method in class jsat.classifiers.boosting.LogitBoost
 
getModels() - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
getModels() - Method in class jsat.classifiers.boosting.SAMME
 
getModelSize() - Method in class jsat.regression.KernelRLS
Returns the number of basis vectors that make up the model
getModelWeights() - Method in class jsat.classifiers.boosting.AdaBoostM1
 
getModelWeights() - Method in class jsat.classifiers.boosting.EmphasisBoost
 
getModelWeights() - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
getModelWeights() - Method in class jsat.classifiers.boosting.SAMME
 
getMomentum() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the momentum in use
getMomentum() - Method in class jsat.math.optimization.stochastic.SGDMomentum
 
getMScale() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the scale used for the LVQ 3 learning algorithm update set.
getMu() - Method in class jsat.distributions.Laplace
 
getMu() - Method in class jsat.distributions.Logistic
 
getName() - Method in class jsat.classifiers.evaluation.Accuracy
 
getName() - Method in class jsat.classifiers.evaluation.AUC
 
getName() - Method in interface jsat.classifiers.evaluation.ClassificationScore
Returns the name to present for this score
getName() - Method in class jsat.classifiers.evaluation.F1Score
 
getName() - Method in class jsat.classifiers.evaluation.FbetaScore
 
getName() - Method in class jsat.classifiers.evaluation.Kappa
 
getName() - Method in class jsat.classifiers.evaluation.LogLoss
 
getName() - Method in class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
getName() - Method in class jsat.classifiers.evaluation.Precision
 
getName() - Method in class jsat.classifiers.evaluation.Recall
 
getName() - Method in class jsat.parameters.Parameter
Returns the display name of this parameter.
getName() - Method in class jsat.regression.evaluation.CoefficientOfDetermination
 
getName() - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
getName() - Method in class jsat.regression.evaluation.MeanSquaredError
 
getName() - Method in interface jsat.regression.evaluation.RegressionScore
Returns the name to present for this score
getName() - Method in class jsat.regression.evaluation.RelativeAbsoluteError
 
getName() - Method in class jsat.regression.evaluation.RelativeSquaredError
 
getNearby(Vec) - Method in class jsat.distributions.multivariate.MetricKDE
 
getNearby(Vec) - Method in class jsat.distributions.multivariate.MultivariateKDE
Returns the list of vectors that have a non zero contribution to the density of the query point x.
getNearby(Vec) - Method in class jsat.distributions.multivariate.ProductKDE
 
getNearbyRaw(Vec) - Method in class jsat.distributions.multivariate.MetricKDE
 
getNearbyRaw(Vec) - Method in class jsat.distributions.multivariate.MultivariateKDE
Returns the list of vectors that have a non zero contribution to the density of the query point x.
getNearbyRaw(Vec) - Method in class jsat.distributions.multivariate.ProductKDE
 
getNegativeSamples() - Method in class jsat.datatransform.visualization.LargeViz
 
getNegEntropyFunction() - Method in class jsat.datatransform.FastICA
 
getNeighborDecay() - Method in class jsat.classifiers.neuralnetwork.SOM
The range of effect each data point has decays with each iteration, and this defines the way in which the rate decays.
getNeighbors() - Method in class jsat.classifiers.knn.LWL
Returns the number of neighbors that will be used to create each local model
getNeighbors() - Method in class jsat.classifiers.knn.NearestNeighbour
Returns the number of neighbors currently consulted to make decisions
getNeighbors(int) - Method in class jsat.classifiers.knn.NearestNeighbour
 
getNeighbors() - Method in class jsat.clustering.LSDBC
Returns the number of neighbors that will be considered when clustering data points
getNeighbors() - Method in class jsat.datatransform.featureselection.ReliefF
Returns the number of neighbors that will be used at each step of the algorithm.
getNeighbors() - Method in class jsat.datatransform.visualization.Isomap
 
getNewMean() - Method in class jsat.driftdetectors.ADWIN
Returns the mean value determined for the newer values that we have drifted into.
getNewStndDev() - Method in class jsat.driftdetectors.ADWIN
Returns the standard deviation for the newer values that we have drifted into.
getNewVariance() - Method in class jsat.driftdetectors.ADWIN
Returns the variance for the newer values that we have drifted into.
getNextPow2TwinPrime(int) - Static method in class jsat.utils.ClosedHashingUtil
Gets the next twin prime that is near a power of 2 and greater than or equal to the given value
getNodes() - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Returns the set of all nodes currently in the graph
getNonZeroIterator(int) - Method in class jsat.linear.ConcatenatedVec
 
getNonZeroIterator(int) - Method in class jsat.linear.Poly2Vec
 
getNonZeroIterator(int) - Method in class jsat.linear.ScaledVector
 
getNonZeroIterator(int) - Method in class jsat.linear.ShiftedVec
 
getNonZeroIterator(int) - Method in class jsat.linear.SparseVector
 
getNonZeroIterator(int) - Method in class jsat.linear.SubVector
 
getNonZeroIterator() - Method in class jsat.linear.Vec
Returns an iterator that will go over the non zero values in the given vector.
getNonZeroIterator(int) - Method in class jsat.linear.Vec
Returns an iterator that will go over the non zero values starting from the specified index in the given vector.
getNonZeroIterator() - Method in class jsat.linear.VecPaired
 
getNonZeroIterator() - Method in class jsat.linear.VecWithNorm
 
getNonZeroIterator(int) - Method in class jsat.linear.VecWithNorm
 
getNorm2() - Method in class jsat.linear.SingularValueDecomposition
Returns the 2 norm of the matrix, which is the maximal singular value.
getNu() - Method in class jsat.classifiers.svm.SBP
Returns the nu SVM parameter
getNugget() - Method in class jsat.regression.OrdinaryKriging
Returns the nugget value passed to the variogram during training.
getNullVar() - Method in interface jsat.testing.onesample.OneSampleTest
 
getNullVar() - Method in class jsat.testing.onesample.TTest
 
getNullVar() - Method in class jsat.testing.onesample.ZTest
 
getNumberOfBins() - Method in class jsat.datatransform.NumericalToHistogram
 
getNumberOfPaths() - Method in class jsat.classifiers.trees.DecisionStump
Returns the number of paths that this decision stump leads to.
getNumberOfTransforms() - Method in class jsat.datatransform.DataTransformProcess
 
getNumCategoricalVars() - Method in class jsat.DataSet
Returns the number of categorical variables for each data point in the set
getNumCentroids() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns the number of centroids to use when training
getNumericalHandling() - Method in class jsat.classifiers.bayesian.NaiveBayes
Returns the method used to handle numerical attributes
getNumericalValues() - Method in class jsat.classifiers.DataPoint
Returns the vector containing the numerical values.
getNumericColumn(int) - Method in class jsat.DataSet
The data set can be seen as a NxM matrix, were each row is a data point, and each column the values for a particular variable.
getNumericColumns() - Method in class jsat.DataSet
Creates an array of column vectors for every numeric variable in this data set.
getNumericColumns(Set<Integer>) - Method in class jsat.DataSet
Creates an array of column vectors for every numeric variable in this data set.
getNumericName(int) - Method in class jsat.DataSet
Returns the name used for the i'th numeric attribute.
getNumFeatures() - Method in class jsat.DataSet
Returns the number of features in this data set, which is the sum of DataSet.getNumCategoricalVars() and DataSet.getNumNumericalVars()
getNumNumericalVars() - Method in class jsat.DataSet
Returns the number of numerical variables for each data point in the set
getNumOfCategories() - Method in class jsat.classifiers.CategoricalData
 
getObject() - Method in class jsat.parameters.ObjectParameter
Returns the current object value
getOldMean() - Method in class jsat.driftdetectors.ADWIN
Returns the mean value determined for the older values that we have drifted away from.
getOldStndDev() - Method in class jsat.driftdetectors.ADWIN
Returns the standard deviation for the older values that we have drifted away from.
getOldVariance() - Method in class jsat.driftdetectors.ADWIN
Returns the variance for the older values that we have drifted away from.
getOmega() - Method in class jsat.distributions.kernels.PukKernel
 
getOnlineColumnStats(boolean) - Method in class jsat.DataSet
Returns summary statistics computed in an online fashion for each numeric variable.
getOnlineDenseStats() - Method in class jsat.DataSet
Returns an OnLineStatistics object that is built by observing what proportion of each data point contains non zero numerical values.
getOptimizer() - Method in class jsat.classifiers.linear.LinearBatch
Returns the optimization method in use, or null.
getOptionName(int) - Method in class jsat.classifiers.CategoricalData
 
getOutOfBagError() - Method in class jsat.classifiers.trees.RandomForest
If RandomForest.isUseOutOfBagError() is false, then this method will return 0 after training.
getP() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns the nearest neighbors parameter.
getP() - Method in class jsat.distributions.discrete.Binomial
 
getP() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
getPair() - Method in class jsat.classifiers.DataPointPair
 
getPair() - Method in class jsat.linear.VecPaired
 
getParameter(String) - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
getParameter(String) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
getParameter(String) - Method in class jsat.classifiers.bayesian.NaiveBayes
 
getParameter(String) - Method in class jsat.classifiers.boosting.AdaBoostM1
 
getParameter(String) - Method in class jsat.classifiers.boosting.ArcX4
 
getParameter(String) - Method in class jsat.classifiers.boosting.Bagging
 
getParameter(String) - Method in class jsat.classifiers.boosting.EmphasisBoost
 
getParameter(String) - Method in class jsat.classifiers.boosting.LogitBoost
 
getParameter(String) - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
getParameter(String) - Method in class jsat.classifiers.boosting.SAMME
 
getParameter(String) - Method in class jsat.classifiers.boosting.Wagging
 
getParameter(String) - Method in class jsat.classifiers.calibration.BinaryCalibration
 
getParameter(String) - Method in class jsat.classifiers.knn.DANN
 
getParameter(String) - Method in class jsat.classifiers.knn.LWL
 
getParameter(String) - Method in class jsat.classifiers.knn.NearestNeighbour
 
getParameter(String) - Method in class jsat.classifiers.linear.AROW
 
getParameter(String) - Method in class jsat.classifiers.linear.BBR
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.BOGD
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.DUOL
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.OSKL
 
getParameter(String) - Method in class jsat.classifiers.linear.kernelized.Projectron
 
getParameter(String) - Method in class jsat.classifiers.linear.LinearBatch
 
getParameter(String) - Method in class jsat.classifiers.linear.LinearSGD
 
getParameter(String) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
getParameter(String) - Method in class jsat.classifiers.linear.NewGLMNET
 
getParameter(String) - Method in class jsat.classifiers.linear.NHERD
 
getParameter(String) - Method in class jsat.classifiers.linear.PassiveAggressive
 
getParameter(String) - Method in class jsat.classifiers.linear.SCD
 
getParameter(String) - Method in class jsat.classifiers.linear.SCW
 
getParameter(String) - Method in class jsat.classifiers.linear.SPA
 
getParameter(String) - Method in class jsat.classifiers.linear.STGD
 
getParameter(String) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
getParameter(String) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
getParameter(String) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
getParameter(String) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
getParameter(String) - Method in class jsat.classifiers.neuralnetwork.LVQ
 
getParameter(String) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
getParameter(String) - Method in class jsat.classifiers.neuralnetwork.SOM
 
getParameter(String) - Method in class jsat.classifiers.OneVSAll
 
getParameter(String) - Method in class jsat.classifiers.OneVSOne
 
getParameter(String) - Method in class jsat.classifiers.RegressorToClassifier
 
getParameter(String) - Method in class jsat.classifiers.svm.DCD
 
getParameter(String) - Method in class jsat.classifiers.svm.DCDs
 
getParameter(String) - Method in class jsat.classifiers.svm.DCSVM
 
getParameter(String) - Method in class jsat.classifiers.svm.extended.CPM
 
getParameter(String) - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
getParameter(String) - Method in class jsat.classifiers.svm.LSSVM
 
getParameter(String) - Method in class jsat.classifiers.svm.Pegasos
 
getParameter(String) - Method in class jsat.classifiers.svm.PegasosK
 
getParameter(String) - Method in class jsat.classifiers.svm.PlattSMO
 
getParameter(String) - Method in class jsat.classifiers.svm.SBP
 
getParameter(String) - Method in class jsat.classifiers.trees.DecisionStump
 
getParameter(String) - Method in class jsat.classifiers.trees.DecisionTree
 
getParameter(String) - Method in class jsat.classifiers.trees.ExtraTree
 
getParameter(String) - Method in class jsat.classifiers.trees.RandomForest
 
getParameter(String) - Method in class jsat.clustering.FLAME
 
getParameter(String) - Method in class jsat.clustering.GapStatistic
 
getParameter(String) - Method in class jsat.clustering.HDBSCAN
 
getParameter(String) - Method in class jsat.clustering.kmeans.KernelKMeans
 
getParameter(String) - Method in class jsat.clustering.kmeans.KMeans
 
getParameter(String) - Method in class jsat.clustering.LSDBC
 
getParameter(String) - Method in class jsat.clustering.OPTICS
 
getParameter(String) - Method in class jsat.datatransform.DataModelPipeline
 
getParameter(String) - Method in class jsat.datatransform.DataTransformBase
 
getParameter(String) - Method in class jsat.datatransform.DataTransformProcess
 
getParameter(String) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
getParameter(String) - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
getParameter(String) - Method in class jsat.distributions.kernels.LinearKernel
 
getParameter(String) - Method in class jsat.distributions.kernels.NormalizedKernel
 
getParameter(String) - Method in class jsat.distributions.kernels.PolynomialKernel
 
getParameter(String) - Method in class jsat.distributions.kernels.SigmoidKernel
 
getParameter(String) - Method in class jsat.distributions.multivariate.MetricKDE
 
getParameter(String) - Method in class jsat.math.decayrates.ExponetialDecay
 
getParameter(String) - Method in class jsat.math.decayrates.InverseDecay
 
getParameter(String) - Method in class jsat.math.decayrates.LinearDecay
 
getParameter(String) - Method in class jsat.math.decayrates.PowerDecay
 
getParameter(String) - Method in interface jsat.parameters.Parameterized
Returns the parameter with the given name.
getParameter(String) - Method in class jsat.regression.KernelRidgeRegression
 
getParameter(String) - Method in class jsat.regression.KernelRLS
 
getParameter(String) - Method in class jsat.regression.NadarayaWatson
 
getParameter(String) - Method in class jsat.regression.OrdinaryKriging
 
getParameter(String) - Method in class jsat.regression.RANSAC
 
getParameter(String) - Method in class jsat.regression.RidgeRegression
 
getParameter(String) - Method in class jsat.regression.StochasticGradientBoosting
 
getParameter(String) - Method in class jsat.regression.StochasticRidgeRegression
 
getParameter(String) - Method in class jsat.text.topicmodel.OnlineLDAsvi
 
getParameterByName(String) - Method in class jsat.parameters.ModelSearch
Finds the parameter object with the given name, or throws an exception if a parameter with the given name does not exist.
getParameters() - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
getParameters() - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
getParameters() - Method in class jsat.classifiers.bayesian.NaiveBayes
 
getParameters() - Method in class jsat.classifiers.boosting.AdaBoostM1
 
getParameters() - Method in class jsat.classifiers.boosting.ArcX4
 
getParameters() - Method in class jsat.classifiers.boosting.Bagging
 
getParameters() - Method in class jsat.classifiers.boosting.EmphasisBoost
 
getParameters() - Method in class jsat.classifiers.boosting.LogitBoost
 
getParameters() - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
getParameters() - Method in class jsat.classifiers.boosting.SAMME
 
getParameters() - Method in class jsat.classifiers.boosting.Wagging
 
getParameters() - Method in class jsat.classifiers.calibration.BinaryCalibration
 
getParameters() - Method in class jsat.classifiers.knn.DANN
 
getParameters() - Method in class jsat.classifiers.knn.LWL
 
getParameters() - Method in class jsat.classifiers.knn.NearestNeighbour
 
getParameters() - Method in class jsat.classifiers.linear.AROW
 
getParameters() - Method in class jsat.classifiers.linear.BBR
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.BOGD
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.DUOL
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.OSKL
 
getParameters() - Method in class jsat.classifiers.linear.kernelized.Projectron
 
getParameters() - Method in class jsat.classifiers.linear.LinearBatch
 
getParameters() - Method in class jsat.classifiers.linear.LinearSGD
 
getParameters() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
getParameters() - Method in class jsat.classifiers.linear.NewGLMNET
 
getParameters() - Method in class jsat.classifiers.linear.NHERD
 
getParameters() - Method in class jsat.classifiers.linear.PassiveAggressive
 
getParameters() - Method in class jsat.classifiers.linear.SCD
 
getParameters() - Method in class jsat.classifiers.linear.SCW
 
getParameters() - Method in class jsat.classifiers.linear.SPA
 
getParameters() - Method in class jsat.classifiers.linear.STGD
 
getParameters() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
getParameters() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
getParameters() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
getParameters() - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
getParameters() - Method in class jsat.classifiers.neuralnetwork.LVQ
 
getParameters() - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
getParameters() - Method in class jsat.classifiers.neuralnetwork.SOM
 
getParameters() - Method in class jsat.classifiers.OneVSAll
 
getParameters() - Method in class jsat.classifiers.OneVSOne
 
getParameters() - Method in class jsat.classifiers.RegressorToClassifier
 
getParameters() - Method in class jsat.classifiers.svm.DCD
 
getParameters() - Method in class jsat.classifiers.svm.DCDs
 
getParameters() - Method in class jsat.classifiers.svm.DCSVM
 
getParameters() - Method in class jsat.classifiers.svm.extended.CPM
 
getParameters() - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
getParameters() - Method in class jsat.classifiers.svm.LSSVM
 
getParameters() - Method in class jsat.classifiers.svm.Pegasos
 
getParameters() - Method in class jsat.classifiers.svm.PegasosK
 
getParameters() - Method in class jsat.classifiers.svm.PlattSMO
 
getParameters() - Method in class jsat.classifiers.svm.SBP
 
getParameters() - Method in class jsat.classifiers.trees.DecisionStump
 
getParameters() - Method in class jsat.classifiers.trees.DecisionTree
 
getParameters() - Method in class jsat.classifiers.trees.ExtraTree
 
getParameters() - Method in class jsat.classifiers.trees.RandomForest
 
getParameters() - Method in class jsat.clustering.FLAME
 
getParameters() - Method in class jsat.clustering.GapStatistic
 
getParameters() - Method in class jsat.clustering.HDBSCAN
 
getParameters() - Method in class jsat.clustering.kmeans.KernelKMeans
 
getParameters() - Method in class jsat.clustering.kmeans.KMeans
 
getParameters() - Method in class jsat.clustering.LSDBC
 
getParameters() - Method in class jsat.clustering.OPTICS
 
getParameters() - Method in class jsat.datatransform.DataModelPipeline
 
getParameters() - Method in class jsat.datatransform.DataTransformBase
 
getParameters() - Method in class jsat.datatransform.DataTransformProcess
 
getParameters() - Method in class jsat.distributions.kernels.BaseL2Kernel
 
getParameters() - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
getParameters() - Method in class jsat.distributions.kernels.LinearKernel
 
getParameters() - Method in class jsat.distributions.kernels.NormalizedKernel
 
getParameters() - Method in class jsat.distributions.kernels.PolynomialKernel
 
getParameters() - Method in class jsat.distributions.kernels.SigmoidKernel
 
getParameters() - Method in class jsat.distributions.multivariate.MetricKDE
 
getParameters() - Method in class jsat.math.decayrates.ExponetialDecay
 
getParameters() - Method in class jsat.math.decayrates.InverseDecay
 
getParameters() - Method in class jsat.math.decayrates.LinearDecay
 
getParameters() - Method in class jsat.math.decayrates.PowerDecay
 
getParameters() - Method in interface jsat.parameters.Parameterized
Returns the list of parameters that can be altered for this learner.
getParameters() - Method in class jsat.regression.KernelRidgeRegression
 
getParameters() - Method in class jsat.regression.KernelRLS
 
getParameters() - Method in class jsat.regression.NadarayaWatson
 
getParameters() - Method in class jsat.regression.OrdinaryKriging
 
getParameters() - Method in class jsat.regression.RANSAC
 
getParameters() - Method in class jsat.regression.RidgeRegression
 
getParameters() - Method in class jsat.regression.StochasticGradientBoosting
 
getParameters() - Method in class jsat.regression.StochasticRidgeRegression
 
getParameters() - Method in class jsat.text.topicmodel.OnlineLDAsvi
 
getParamsFromMethods(Object) - Static method in class jsat.parameters.Parameter
Given an object, this method will use reflection to automatically find getter and setter method pairs, and create Parameter object for each getter setter pair.
Getters are found by searching for no argument methods that start with "get" or "is".
getParents(N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Returns the set of all parents of the requested node, or null if the node does not exist in the graph
getPath(DataPoint) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
getPath(DataPoint) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns the path down the tree the given data point would have taken, or -1 if this node was a leaf node OR if a missing value prevent traversal down the path
getPathWeight(int) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
getPathWeight(int) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns the relative weight of each path, which should be an indication of how much of the training data went down each path.
getPerplexity() - Method in class jsat.datatransform.visualization.LargeViz
 
getPerplexity() - Method in class jsat.datatransform.visualization.TSNE
 
getPhase1Learner() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns the method to use for learning the centroids of the network.
getPhase2Learner() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns the learning method to use for determining the bandwidths of each center in the network.
getPivotSelectionMethod() - Method in class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
getPointWeights() - Method in class jsat.classifiers.ClassificationModelEvaluation
If ClassificationModelEvaluation.keepPredictions(boolean) was set, this method will return the array storing the weights for each of the points that were classified
getPredicting() - Method in class jsat.classifiers.ClassificationDataSet
 
getPredictions() - Method in class jsat.classifiers.ClassificationModelEvaluation
If ClassificationModelEvaluation.keepPredictions(boolean) was set, this method will return the array storing the predictions made by the classifier during evaluation.
getPrior() - Method in class jsat.classifiers.linear.BBR
Returns the regularizing prior in use
getPrior() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the prior used for regularization
getPriority() - Method in class jsat.utils.FibHeap.FibNode
 
getPriors() - Method in class jsat.classifiers.ClassificationDataSet
Computes the prior probabilities of each class, and returns an array containing the values.
getProb(int) - Method in class jsat.classifiers.CategoricalResults
Returns the stored probability for the given category
getProbability() - Method in class jsat.utils.ProbailityMatch
 
getProjectedDimension() - Method in class jsat.datatransform.JLTransform
 
getPruneFrequency() - Method in class jsat.classifiers.svm.extended.OnlineAMM
Returns the number of iterations between each pruning
getPruningMethod() - Method in class jsat.classifiers.trees.DecisionTree
Returns the method of pruning used after tree construction
getPseudoDet() - Method in class jsat.linear.SingularValueDecomposition
Computes the pseudo determinant of the matrix, which corresponds to absolute value of the determinant of the full rank square sub matrix that contains all non zero singular values.
getPseudoDet(double) - Method in class jsat.linear.SingularValueDecomposition
Computes the pseudo determinant of the matrix, which corresponds to absolute value of the determinant of the full rank square sub matrix that contains all non singular values > tol.
getPseudoInverse() - Method in class jsat.linear.SingularValueDecomposition
Returns the Moore–Penrose pseudo inverse of the matrix.
getPseudoInverse(double) - Method in class jsat.linear.SingularValueDecomposition
Returns the Moore–Penrose pseudo inverse of the matrix.
getQueryInfo(Vec) - Method in class jsat.distributions.kernels.BaseKernelTrick
 
getQueryInfo(Vec) - Method in class jsat.distributions.kernels.BaseL2Kernel
 
getQueryInfo(Vec) - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
getQueryInfo(Vec) - Method in interface jsat.distributions.kernels.KernelTrick
Pre computes query information that would have be generated if the query was a member of the original list of vectors when calling KernelTrick.getAccelerationCache(java.util.List) .
getQueryInfo(Vec) - Method in class jsat.distributions.kernels.NormalizedKernel
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.CosineDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.DistanceCounter
 
getQueryInfo(Vec) - Method in interface jsat.linear.distancemetrics.DistanceMetric
Pre computes query information that would have be generated if the query was a member of the original list of vectors when calling DistanceMetric.getAccelerationCache(java.util.List) .
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.KernelDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.PearsonDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
getQueryInfo(Vec) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
getR() - Method in class jsat.classifiers.linear.AROW
Returns the regularization parameter
getR() - Method in class jsat.classifiers.linear.kernelized.CSKLR
Returns the maximal norm of the algorithm
getR() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Returns the maximal norm of the algorithm
getR() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns the maximum allowed norm for the model learned
getRadius() - Method in class jsat.linear.vectorcollection.lsh.E2LSH
Returns the desired approximate radius for which to return results
getRandom() - Static method in class jsat.utils.random.RandomUtil
Returns a new Random object that can be used.
getRandom(int) - Static method in class jsat.utils.random.RandomUtil
Returns a new Random object that can be used, initiated with the given seed.
getRandomFeatureCount() - Method in class jsat.classifiers.trees.RandomDecisionTree
Returns the number of random features used at each node of the tree
getRank() - Method in class jsat.linear.SingularValueDecomposition
Returns the numerical rank of the matrix.
getRank(double) - Method in class jsat.linear.SingularValueDecomposition
Returns the numerical rank of the matrix.
getRawBasisVecs() - Method in class jsat.distributions.kernels.KernelPoint
Returns the list of the raw vectors being used by the kernel points.
getRawBasisVecs() - Method in class jsat.distributions.kernels.KernelPoints
Returns a list of the raw vectors being used by the kernel points.
getRawKeyTable() - Method in class jsat.utils.IntDoubleMap
 
getRawStatusTable() - Method in class jsat.utils.IntDoubleMap
 
getRawValueTable() - Method in class jsat.utils.IntDoubleMap
 
getRawWeight() - Method in class jsat.classifiers.linear.ALMA2
 
getRawWeight(int) - Method in class jsat.classifiers.linear.ALMA2
 
getRawWeight() - Method in class jsat.classifiers.linear.AROW
 
getRawWeight(int) - Method in class jsat.classifiers.linear.AROW
 
getRawWeight() - Method in class jsat.classifiers.linear.BBR
 
getRawWeight(int) - Method in class jsat.classifiers.linear.BBR
 
getRawWeight(int) - Method in class jsat.classifiers.linear.LinearBatch
 
getRawWeight(int) - Method in class jsat.classifiers.linear.LinearSGD
 
getRawWeight() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
getRawWeight(int) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
getRawWeight() - Method in class jsat.classifiers.linear.NewGLMNET
 
getRawWeight(int) - Method in class jsat.classifiers.linear.NewGLMNET
 
getRawWeight() - Method in class jsat.classifiers.linear.NHERD
 
getRawWeight(int) - Method in class jsat.classifiers.linear.NHERD
 
getRawWeight() - Method in class jsat.classifiers.linear.PassiveAggressive
 
getRawWeight(int) - Method in class jsat.classifiers.linear.PassiveAggressive
 
getRawWeight() - Method in class jsat.classifiers.linear.ROMMA
 
getRawWeight(int) - Method in class jsat.classifiers.linear.ROMMA
 
getRawWeight() - Method in class jsat.classifiers.linear.SCD
 
getRawWeight(int) - Method in class jsat.classifiers.linear.SCD
 
getRawWeight() - Method in class jsat.classifiers.linear.SCW
 
getRawWeight(int) - Method in class jsat.classifiers.linear.SCW
 
getRawWeight(int) - Method in class jsat.classifiers.linear.SPA
 
getRawWeight() - Method in class jsat.classifiers.linear.STGD
 
getRawWeight(int) - Method in class jsat.classifiers.linear.STGD
 
getRawWeight(int) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
getRawWeight() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
getRawWeight(int) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
getRawWeight() - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
getRawWeight(int) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
getRawWeight() - Method in class jsat.classifiers.svm.DCD
 
getRawWeight(int) - Method in class jsat.classifiers.svm.DCD
 
getRawWeight() - Method in class jsat.classifiers.svm.DCDs
 
getRawWeight(int) - Method in class jsat.classifiers.svm.DCDs
 
getRawWeight() - Method in class jsat.classifiers.svm.Pegasos
 
getRawWeight(int) - Method in class jsat.classifiers.svm.Pegasos
 
getRawWeight() - Method in class jsat.regression.LogisticRegression
 
getRawWeight(int) - Method in class jsat.regression.LogisticRegression
 
getRawWeight() - Method in class jsat.regression.MultipleLinearRegression
 
getRawWeight(int) - Method in class jsat.regression.MultipleLinearRegression
 
getRawWeight() - Method in class jsat.regression.StochasticRidgeRegression
 
getRawWeight(int) - Method in class jsat.regression.StochasticRidgeRegression
 
getRawWeight(int) - Method in interface jsat.SimpleWeightVectorModel
Returns the raw weight vector associated with the given class index.
getRawWeight() - Method in interface jsat.SingleWeightVectorModel
Returns the only weight vector used for the model
getReachabilityArray() - Method in class jsat.clustering.OPTICS
Returns a copy of the reachability array in correct reachability order.
getReal() - Method in class jsat.math.Complex
Returns the real part of this complex number
getRealEigenvalues() - Method in class jsat.linear.EigenValueDecomposition
Return the real parts of the eigenvalues
getRegression(double) - Method in class jsat.lossfunctions.AbsoluteLoss
 
getRegression(double) - Method in class jsat.lossfunctions.EpsilonInsensitiveLoss
 
getRegression(double) - Method in class jsat.lossfunctions.HuberLoss
 
getRegression(double) - Method in interface jsat.lossfunctions.LossR
Given the score value of a data point, this returns the correct numeric result.
getRegression(double) - Method in class jsat.lossfunctions.SquaredLoss
 
getRegressionTargetScore() - Method in class jsat.parameters.ModelSearch
Returns the regression score that is trying to be optimized via grid search
getRegressor() - Method in class jsat.regression.RegressionModelEvaluation
Returns the regressor that was to be evaluated
getRegularization() - Method in class jsat.classifiers.linear.BBR
Returns the regularization penalty used if the auto value is not used
getRegularization() - Method in class jsat.classifiers.linear.kernelized.BOGD
Returns the regularization parameter used
getRegularization() - Method in class jsat.classifiers.linear.SCD
Returns the regularization parameter value used for learning.
getRegularization() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the regularization coefficient in use
getRegularization() - Method in class jsat.classifiers.svm.Pegasos
Returns the amount of regularization to used in training
getRegularization() - Method in class jsat.classifiers.svm.PegasosK
Returns the amount of regularization used
getRegularization() - Method in class jsat.datatransform.WhitenedPCA
 
getRegularizer() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getRepresentativesPerClass() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the number of representatives to create for each class.
getResults() - Method in class jsat.classifiers.trees.ImpurityScore
Obtains the current categorical results by prior probability
getReverse(Comparator<T>) - Static method in class jsat.utils.IndexTable
Obtains the reverse order comparator
getReverseNominalMap() - Method in class jsat.datatransform.RemoveAttributeTransform
Returns a mapping from the nominal indices in the transformed space back to their original indices
getReverseNumericMap() - Method in class jsat.datatransform.RemoveAttributeTransform
Returns a mapping from the numeric indices in the transformed space back to their original indices
getRho() - Method in class jsat.classifiers.linear.kernelized.DUOL
Returns the "conflict" parameter value for the threshold of performing double updates
getRho() - Method in class jsat.math.optimization.stochastic.AdaDelta
 
getRho() - Method in class jsat.math.optimization.stochastic.RMSProp
 
getRidge() - Method in class jsat.datatransform.kernel.Nystrom
Returns the regularization value added to each eigen value
getRounds() - Method in class jsat.classifiers.boosting.Bagging
Returns the number of rounds of boosting that will be done, which is also the number of base learners that will be trained
getRow(int) - Method in class jsat.linear.Matrix
Creates a vector that has a copy of the values in row i of this matrix.
getRowView(int) - Method in class jsat.linear.DenseMatrix
 
getRowView(int) - Method in class jsat.linear.Matrix
Obtains a vector that is backed by this, at very little memory cost.
getRowView(int) - Method in class jsat.linear.MatrixOfVecs
 
getRowView(int) - Method in class jsat.linear.SparseMatrix
 
getRowView(int) - Method in class jsat.linear.SubMatrix
 
getRowView(int) - Method in class jsat.linear.TransposeView
 
getS() - Method in class jsat.distributions.Logistic
 
getS() - Method in class jsat.linear.SingularValueDecomposition
Returns the diagonal matrix S such that the SVD product results in the original matrix.
getSampleCount() - Method in class jsat.clustering.CLARA
 
getSampledDataSet(ClassificationDataSet, int[]) - Static method in class jsat.classifiers.boosting.Bagging
Creates a new data set from the given sample counts.
getSampledDataSet(RegressionDataSet, int[]) - Static method in class jsat.classifiers.boosting.Bagging
Creates a new data set from the given sample counts.
getSamples(int) - Method in class jsat.classifiers.ClassificationDataSet
Returns the list of all examples that belong to the given category.
getSamples() - Method in class jsat.clustering.GapStatistic
 
getSampleSize() - Method in class jsat.classifiers.ClassificationDataSet
 
getSampleSize() - Method in class jsat.clustering.CLARA
 
getSampleSize() - Method in class jsat.DataSet
Returns the number of data points in this data set
getSampleSize() - Method in class jsat.regression.RegressionDataSet
 
getSampleSize() - Method in class jsat.SimpleDataSet
 
getSampleVariableVector(int, int) - Method in class jsat.classifiers.ClassificationDataSet
This method is a counter part to DataSet.getNumericColumn(int).
getScale() - Method in class jsat.distributions.Cauchy
 
getScale() - Method in class jsat.distributions.Levy
Returns the scale parameter used by this distribution
getScale() - Method in class jsat.distributions.Rayleigh
 
getScale() - Method in class jsat.linear.ScaledVector
Returns the current scale in use
getScaleBandwidthFactor() - Method in class jsat.clustering.MeanShift
Returns the value by which the bandwidth of the MultivariateKDE will be scaled by.
getScore(DataPoint) - Method in class jsat.classifiers.boosting.EmphasisBoost
 
getScore(DataPoint) - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
getScore(DataPoint) - Method in interface jsat.classifiers.calibration.BinaryScoreClassifier
Returns the numeric score for predicting a class of a given data point, where the sign of the value indicates which class the data point is predicted to belong to.
getScore() - Method in class jsat.classifiers.evaluation.Accuracy
 
getScore() - Method in class jsat.classifiers.evaluation.AUC
 
getScore() - Method in interface jsat.classifiers.evaluation.ClassificationScore
Computes the score for the results that have been enrolled via ClassificationScore.addResult(jsat.classifiers.CategoricalResults, int, double)
getScore() - Method in class jsat.classifiers.evaluation.F1Score
 
getScore() - Method in class jsat.classifiers.evaluation.FbetaScore
 
getScore() - Method in class jsat.classifiers.evaluation.Kappa
 
getScore() - Method in class jsat.classifiers.evaluation.LogLoss
 
getScore() - Method in class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
getScore() - Method in class jsat.classifiers.evaluation.Precision
 
getScore() - Method in class jsat.classifiers.evaluation.Recall
 
getScore() - Method in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.ALMA2
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.AROW
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.kernelized.BOGD
 
getScore(double, double) - Static method in class jsat.classifiers.linear.kernelized.CSKLR
Returns the binary logistic regression score
getScore(DataPoint) - Method in class jsat.classifiers.linear.kernelized.DUOL
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.kernelized.OSKL
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.kernelized.Projectron
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.NHERD
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.PassiveAggressive
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.ROMMA
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.SCW
 
getScore(DataPoint) - Method in class jsat.classifiers.linear.STGD
 
getScore(DataPoint) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
getScore(DataPoint) - Method in class jsat.classifiers.RegressorToClassifier
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.DCD
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.DCDs
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.DCSVM
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.extended.CPM
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.LSSVM
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.Pegasos
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.PegasosK
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.PlattSMO
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.SBP
 
getScore(DataPoint) - Method in class jsat.classifiers.svm.SVMnoBias
 
getScore() - Method in class jsat.classifiers.trees.ImpurityScore
Computes the current impurity score for the points that have been added.
getScore(DataSet, Object, int, Random) - Static method in class jsat.datatransform.featureselection.SFS
The score function for a data set and a learner by cross validation of a classifier
getScore() - Method in class jsat.regression.evaluation.CoefficientOfDetermination
 
getScore() - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
getScore() - Method in class jsat.regression.evaluation.MeanSquaredError
 
getScore() - Method in interface jsat.regression.evaluation.RegressionScore
Computes the score for the results that have been enrolled via RegressionScore.addResult(double, double, double)
getScore() - Method in class jsat.regression.evaluation.RelativeAbsoluteError
 
getScore() - Method in class jsat.regression.evaluation.RelativeSquaredError
 
getScoreStats(ClassificationScore) - Method in class jsat.classifiers.ClassificationModelEvaluation
Gets the statistics associated with the given score.
getScoreStats(RegressionScore) - Method in class jsat.regression.RegressionModelEvaluation
Gets the statistics associated with the given score.
getSecondItem() - Method in class jsat.utils.Pair
 
getSecondItem() - Method in class jsat.utils.PairedReturn
Returns the second object stored
getSeedSelection() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the method of seed selection used
getSeedSelection() - Method in class jsat.clustering.EMGaussianMixture
 
getSeedSelection() - Method in class jsat.clustering.kmeans.GMeans
 
getSeedSelection() - Method in class jsat.clustering.kmeans.KMeans
 
getSeedSelection() - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Returns the method of seed selection to use
getSeedSelection() - Method in class jsat.clustering.kmeans.XMeans
 
getSeedSelection() - Method in class jsat.clustering.PAM
 
getSelectedCategorical() - Method in class jsat.datatransform.featureselection.BDS
Returns a copy of the set of categorical features selected by the search algorithm
getSelectedCategorical() - Method in class jsat.datatransform.featureselection.LRS
Returns a copy of the set of categorical features selected by the search algorithm
getSelectedCategorical() - Method in class jsat.datatransform.featureselection.SBS
Returns a copy of the set of categorical features selected by the search algorithm
getSelectedCategorical() - Method in class jsat.datatransform.featureselection.SFS
Returns a copy of the set of categorical features selected by the search algorithm
getSelectedNumerical() - Method in class jsat.datatransform.featureselection.BDS
Returns a copy of the set of numerical features selected by the search algorithm.
getSelectedNumerical() - Method in class jsat.datatransform.featureselection.LRS
Returns a copy of the set of numerical features selected by the search algorithm.
getSelectedNumerical() - Method in class jsat.datatransform.featureselection.SBS
Returns a copy of the set of numerical features selected by the search algorithm.
getSelectedNumerical() - Method in class jsat.datatransform.featureselection.SFS
Returns a copy of the set of numerical features selected by the search algorithm.
getSelectionCount() - Method in class jsat.classifiers.trees.ExtraTree
Returns the number of random features chosen at each level in the tree
getShift() - Method in class jsat.linear.ShiftedVec
 
getSigma() - Method in class jsat.datatransform.kernel.RFF_RBF
Returns the σ value used for the RBF kernel approximation.
getSigma() - Method in class jsat.distributions.kernels.GeneralRBFKernel
 
getSigma() - Method in class jsat.distributions.kernels.PukKernel
 
getSigma() - Method in class jsat.distributions.kernels.RBFKernel
 
getSignatureBitLength() - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
Returns the signature or encoding length in bits.
getSingularValues() - Method in class jsat.linear.SingularValueDecomposition
Returns a copy of the sorted array of the singular values, include the near zero ones.
getSkewness() - Method in class jsat.math.OnLineStatistics
 
getSmoothing() - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
getSmoothing() - Method in class jsat.math.ExponentialMovingStatistics
 
getSolverMode() - Method in class jsat.regression.RidgeRegression
Returns the solver in use
getSomHeight() - Method in class jsat.classifiers.neuralnetwork.SOM
Returns the height of the SOM lattice to create
getSomWidth() - Method in class jsat.classifiers.neuralnetwork.SOM
Returns the width of the SOM lattice to create
getSparsityStats() - Method in class jsat.DataSet
Returns statistics on the sparsity of the vectors in this data set.
getSplitIndex(List<Integer>, int) - Method in class jsat.linear.vectorcollection.KDTree
 
getSplittingAttribute() - Method in class jsat.classifiers.trees.DecisionStump
Returns the attribute that this stump has decided to use to compute results.
getSqrdNorm(int, int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseL2Kernel
Returns the squared L2 norm between two points from the cache values.
getSqrdNorm(int, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseL2Kernel
Returns the squared L2 norm of the given point from the cache
getSqrdNorm(int, Vec, List<Double>, List<? extends Vec>, List<Double>) - Method in class jsat.distributions.kernels.BaseL2Kernel
Returns the squared L2 norm between a point in the cache and one with a provided qi value
getSqrdNorm() - Method in class jsat.distributions.kernels.KernelPoint
Returns the squared values of the 2 norm of the point this object represents
getSqrdNorm(int) - Method in class jsat.distributions.kernels.KernelPoints
Returns the squared 2 norm value of the k'th KernelPoint
getStandardDeviation() - Method in class jsat.math.ExponentialMovingStatistics
 
getStandardDeviation() - Method in class jsat.math.OnLineStatistics
 
getStandardDeviations() - Method in class jsat.classifiers.boosting.WaggingNormal
Returns the standard deviation used for the normal distribution
getStartBlock(int, int, int) - Static method in class jsat.utils.concurrent.ParallelUtils
Gets the starting index (inclusive) for splitting up a list of items into P evenly sized blocks.
getStartBlock(int, int) - Static method in class jsat.utils.concurrent.ParallelUtils
Gets the starting index (inclusive) for splitting up a list of items into SystemInfo.LogicalCores evenly sized blocks.
getStartLevel() - Method in class jsat.classifiers.svm.DCSVM
 
getStndDev() - Method in class jsat.classifiers.neuralnetwork.initializers.GaussianNormalInit
 
getStndDev() - Method in class jsat.driftdetectors.ADWIN
Returns the standard deviation for all inputs contained in the current window.
getStndDevs() - Method in class jsat.clustering.FLAME
Returns the number of standard deviations away from the mean density an outlier must be
getStoppingDist() - Method in class jsat.classifiers.neuralnetwork.LVQ
Returns the stopping distance used to terminate the algorithm early
getStopSize() - Method in class jsat.classifiers.trees.ExtraTree
Returns the stopping size for tree growth
getSubEpochs() - Method in class jsat.classifiers.svm.extended.AMM
Returns the number of passes through the data set done on each iteration
getSubset(List<Integer>) - Method in class jsat.classifiers.ClassificationDataSet
 
getSubset(List<Integer>) - Method in class jsat.DataSet
Creates a new dataset that is a subset of this dataset.
getSubset(List<Integer>) - Method in class jsat.regression.RegressionDataSet
 
getSubset(List<Integer>) - Method in class jsat.SimpleDataSet
 
getSuccessRate() - Method in class jsat.driftdetectors.DDM
Returns the current estimate of the success rate (number of true inputs) for the model.
getSumOfWeights() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the total value of the weights for all data points that were tested against
getSumOfWeights() - Method in class jsat.classifiers.trees.ImpurityScore
Returns the sum of the weights for all points currently in the impurity score
getSumOfWeights() - Method in class jsat.math.OnLineStatistics
Returns the sum of the weights for all data points added to the statistics.
getSupportVectorCount() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns the number of data points accepted as support vectors
getTargetDimension() - Method in class jsat.datatransform.visualization.Isomap
 
getTargetDimension() - Method in class jsat.datatransform.visualization.LargeViz
 
getTargetDimension() - Method in class jsat.datatransform.visualization.MDS
 
getTargetDimension() - Method in class jsat.datatransform.visualization.TSNE
 
getTargetDimension() - Method in interface jsat.datatransform.visualization.VisualizationTransform
 
getTargetValue(int) - Method in class jsat.regression.RegressionDataSet
Returns the target regression value for the i'th data point in the data set.
getTargetValues() - Method in class jsat.regression.RegressionDataSet
Returns a vector containing the target regression values for each data point.
getTau() - Method in class jsat.math.decayrates.InverseDecay
Returns the early rate dampening parameter
getTau() - Method in class jsat.math.decayrates.PowerDecay
Returns the early rate dampening parameter
getTermFrequency(int) - Method in class jsat.text.TextDataLoader
Return the number of times a token has been seen in the document
getTestProportion() - Method in class jsat.classifiers.trees.DecisionTree
Returns the proportion of the training set that is put aside to perform pruning with
getTestVars() - Method in interface jsat.testing.onesample.OneSampleTest
 
getTestVars() - Method in class jsat.testing.onesample.TTest
 
getTestVars() - Method in class jsat.testing.onesample.ZTest
 
getTextVectorCreator() - Method in class jsat.text.HashedTextDataLoader
Returns the TextVectorCreator used by this data loader to convert documents into vectors.
getTextVectorCreator() - Method in class jsat.text.TextDataLoader
Returns the TextVectorCreator used by this data loader to convert documents into vectors.
getThreshold() - Method in class jsat.classifiers.linear.STGD
Returns the coefficient threshold parameter
getThreshold() - Method in class jsat.datatransform.PCA
 
getTolerance() - Method in class jsat.classifiers.linear.BBR
Returns the tolerance parameter that controls convergence
getTolerance() - Method in class jsat.classifiers.linear.LinearBatch
Returns the value of the convergence tolerance parameter
getTolerance() - Method in class jsat.classifiers.linear.NewGLMNET
 
getTolerance() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns the minimum tolerance for early stopping.
getTolerance() - Method in class jsat.classifiers.svm.DCDs
Returns the tolerance value used to terminate early
getTolerance() - Method in class jsat.classifiers.svm.PlattSMO
Returns the solution tolerance
getTolerance() - Method in class jsat.classifiers.svm.SVMnoBias
Returns the solution tolerance
getTolerance() - Method in class jsat.datatransform.visualization.MDS
 
getTopics(Vec) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Computes the topic distribution for the given document.
Note that the returned vector will be dense, but many of the values may be very nearly zero.
getTopicVec(int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Returns the topic vector for a given topic.
getTotalClassificationTime() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the total number of milliseconds spent performing classification on the testing set.
getTotalClassificationTime() - Method in class jsat.regression.RegressionModelEvaluation
Returns the total number of milliseconds spent performing regression on the testing set.
getTotalTrainingTime() - Method in class jsat.classifiers.ClassificationModelEvaluation
Returns the total number of milliseconds spent training the classifier.
getTotalTrainingTime() - Method in class jsat.regression.RegressionModelEvaluation
Returns the total number of milliseconds spent training the regressor.
getTrainedClassifier() - Method in class jsat.parameters.ModelSearch
Returns the resultant classifier trained on the whole data set after performing parameter tuning.
getTrainedRegressor() - Method in class jsat.parameters.ModelSearch
Returns the resultant regressor trained on the whole data set after performing parameter tuning.
getTrainingProportion() - Method in class jsat.regression.StochasticGradientBoosting
Returns the fraction of the data points used during each iteration of the training algorithm.
getTreeNodeVisitor() - Method in class jsat.classifiers.trees.DecisionTree
 
getTreeNodeVisitor() - Method in class jsat.classifiers.trees.ERTrees
 
getTreeNodeVisitor() - Method in class jsat.classifiers.trees.ExtraTree
 
getTreeNodeVisitor() - Method in interface jsat.classifiers.trees.TreeLearner
Obtains a node visitor for the tree learner that can be used to traverse and predict from the learned tree
getTrials() - Method in class jsat.distributions.discrete.Binomial
 
getTrials() - Method in class jsat.parameters.RandomSearch
 
getTrustH0() - Method in class jsat.clustering.kmeans.GMeans
 
getTruths() - Method in class jsat.classifiers.ClassificationModelEvaluation
If ClassificationModelEvaluation.keepPredictions(boolean) was set, this method will return the array storing the target classes that should have been predicted during evaluation.
getTwiceShallowClone() - Method in class jsat.classifiers.ClassificationDataSet
 
getTwiceShallowClone() - Method in class jsat.DataSet
Returns a new version of this data set that is of the same type, and contains a different listing pointing to shallow data point copies.
getTwiceShallowClone() - Method in class jsat.regression.RegressionDataSet
 
getTwiceShallowClone() - Method in class jsat.SimpleDataSet
 
getU() - Method in class jsat.linear.SingularValueDecomposition
Returns the backing matrix U of the SVD.
getUseDefaultSelectionCount() - Method in class jsat.classifiers.trees.ERTrees
Returns if the default heuristic for the selection count is used
getUseDefaultStopSize() - Method in class jsat.classifiers.trees.ERTrees
Returns if the default heuristic for the stop size is used
getV() - Method in class jsat.linear.EigenValueDecomposition
Return a copy of the eigenvector matrix
getV() - Method in class jsat.linear.SingularValueDecomposition
Returns the backing matrix V of the SVD.
getVal(Random) - Method in class jsat.linear.RandomMatrix
Computes the value of an index given the already initialized Random object.
getVal(Random) - Method in class jsat.linear.RandomVector
Computes the value of an index given the already initialized Random object.
getValue() - Method in class jsat.linear.IndexValue
Returns the value of the stored index
getValue() - Method in class jsat.parameters.BooleanParameter
Returns the current value for the parameter.
getValue() - Method in class jsat.parameters.DoubleParameter
Returns the current value for the parameter.
getValue() - Method in class jsat.parameters.IntParameter
Returns the current value for the parameter.
getValue() - Method in class jsat.utils.FibHeap.FibNode
 
getValueString() - Method in class jsat.parameters.BooleanParameter
 
getValueString() - Method in class jsat.parameters.DoubleParameter
 
getValueString() - Method in class jsat.parameters.IntParameter
 
getValueString() - Method in class jsat.parameters.MetricParameter
 
getValueString() - Method in class jsat.parameters.ObjectParameter
 
getValueString() - Method in class jsat.parameters.Parameter
Returns a string indicating the value currently held by the Parameter
getVarance() - Method in class jsat.math.OnLineStatistics
Computes the population variance
getVariables() - Method in class jsat.distributions.Beta
 
getVariables() - Method in class jsat.distributions.Cauchy
 
getVariables() - Method in class jsat.distributions.ChiSquared
 
getVariables() - Method in class jsat.distributions.ContinuousDistribution
Returns an array, where each value contains the name of a parameter in the distribution.
getVariables() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
getVariables() - Method in class jsat.distributions.Exponential
 
getVariables() - Method in class jsat.distributions.FisherSendor
 
getVariables() - Method in class jsat.distributions.Gamma
 
getVariables() - Method in class jsat.distributions.Kolmogorov
 
getVariables() - Method in class jsat.distributions.Laplace
 
getVariables() - Method in class jsat.distributions.Levy
 
getVariables() - Method in class jsat.distributions.Logistic
 
getVariables() - Method in class jsat.distributions.LogNormal
 
getVariables() - Method in class jsat.distributions.LogUniform
 
getVariables() - Method in class jsat.distributions.MaxwellBoltzmann
 
getVariables() - Method in class jsat.distributions.Normal
 
getVariables() - Method in class jsat.distributions.Pareto
 
getVariables() - Method in class jsat.distributions.Rayleigh
 
getVariables() - Method in class jsat.distributions.StudentT
 
getVariables() - Method in class jsat.distributions.TruncatedDistribution
 
getVariables() - Method in class jsat.distributions.Uniform
 
getVariables() - Method in class jsat.distributions.Weibull
 
getVariance() - Method in class jsat.driftdetectors.ADWIN
Returns the variance for all inputs contained in the current window
getVariance() - Method in class jsat.math.ExponentialMovingStatistics
 
getVector() - Method in class jsat.classifiers.DataPointPair
getVector() - Method in class jsat.linear.VecPaired
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.CoverTree.CoverTreeFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.CoverTree.CoverTreeFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.DefaultVectorCollectionFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.DefaultVectorCollectionFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.EuclideanCollection.EuclideanCollectionFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.EuclideanCollection.EuclideanCollectionFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH.RandomProjectionLSHFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH.RandomProjectionLSHFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.RandomBallCover.RandomBallCoverFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.RandomBallCover.RandomBallCoverFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot.RandomBallCoverOneShotFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot.RandomBallCoverOneShotFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.RTree.RTreeFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.RTree.RTreeFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.VectorArray.VectorArrayFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.VectorArray.VectorArrayFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in interface jsat.linear.vectorcollection.VectorCollectionFactory
Creates a new Vector Collection from the given source using the provided metric.
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in interface jsat.linear.vectorcollection.VectorCollectionFactory
Creates a new Vector Collection from the given source using the provided metric.
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.VPTree.VPTreeFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.VPTree.VPTreeFactory
 
getVectorCollection(List<V>, DistanceMetric) - Method in class jsat.linear.vectorcollection.VPTreeMV.VPTreeMVFactory
 
getVectorCollection(List<V>, DistanceMetric, ExecutorService) - Method in class jsat.linear.vectorcollection.VPTreeMV.VPTreeMVFactory
 
getVectorConstant(Vec) - Method in interface jsat.linear.distancemetrics.DenseSparseMetric
Computes a summary constant value for the vector that is based on the distance metric in use.
getVectorConstant(Vec) - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
getVectorConstant(Vec) - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
getVectorConstant(Vec) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
getVecView() - Method in class jsat.classifiers.CategoricalResults
 
getVecView() - Method in class jsat.utils.DoubleList
Obtains a view of this double list as a dense vector with equal length.
getVocabSize() - Method in class jsat.text.topicmodel.OnlineLDAsvi
Returns the size of the vocabulary for LDA, or -1 if this object is not ready to learn
getVRaw() - Method in class jsat.linear.EigenValueDecomposition
Returns the raw eigenvector matrix.
getVT() - Method in class jsat.linear.EigenValueDecomposition
Returns a copy of the transposed eigenvector matrix.
getW() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns a copy of the weight vector used to compute results via a dot product.
getWarningThreshold() - Method in class jsat.driftdetectors.DDM
Returns the threshold multiple for controlling the false positive / negative rate on detecting changes.
getWeakClassifier() - Method in class jsat.classifiers.boosting.Wagging
Returns the weak learner used for classification.
getWeakLearner() - Method in class jsat.classifiers.boosting.AdaBoostM1
Returns the weak learner currently being used by this method.
getWeakLearner() - Method in class jsat.classifiers.boosting.ArcX4
Returns the weak learner used
getWeakLearner() - Method in class jsat.classifiers.boosting.EmphasisBoost
Returns the weak learner currently being used by this method.
getWeakLearner() - Method in class jsat.classifiers.boosting.ModestAdaBoost
Returns the weak learner currently being used by this method.
getWeakRegressor() - Method in class jsat.classifiers.boosting.Wagging
Returns the weak learner used for regression
getWeight() - Method in class jsat.classifiers.DataPoint
Returns the weight that this data point carries.
getWeight(int, int, double, Random) - Method in enum jsat.classifiers.neuralnetwork.BackPropagationNet.WeightInitialization
 
getWeight() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
Returns the weight vector used by this object.
getWeightDecay() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the weight decay used for each update
getWeightInit() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
 
getWeightInitialization() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Returns the method of weight initialization used
getWeights() - Method in class jsat.datatransform.featureselection.ReliefF
Returns accesses to the learned weight data.
getWeightSampledDataSet(ClassificationDataSet, int[]) - Static method in class jsat.classifiers.boosting.Bagging
Creates a new data set from the given sample counts.
getWeightSampledDataSet(RegressionDataSet, int[]) - Static method in class jsat.classifiers.boosting.Bagging
Creates a new data set from the given sample counts.
getWeightVec() - Method in class jsat.classifiers.linear.ALMA2
Returns the weight vector used to compute results via a dot product.
getWeightVec() - Method in class jsat.classifiers.linear.AROW
Returns the weight vector used to compute results via a dot product.
getWeightVec() - Method in class jsat.classifiers.linear.BBR
Returns the weight vector used to compute results via a dot product.
getWeightVec() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Returns the weight vector used to compute results via a dot product.
getWeightVec() - Method in class jsat.classifiers.linear.NHERD
Returns the weight vector used to compute results via a dot product.
getWeightVec() - Method in class jsat.classifiers.linear.ROMMA
Returns the weight vector used to compute results via a dot product.
getWeightVec() - Method in class jsat.classifiers.linear.SCW
Returns the weight vector used to compute results via a dot product.
getWidnowLength() - Method in class jsat.driftdetectors.ADWIN
This returns the current "length" of the window, which is the number of items that have been added to the ADWIN object since the last drift, and is reduced when drift occurres.
getWordForIndex(int) - Method in class jsat.text.TextDataLoader
Returns the original token for the given index in the data set
getWRaw() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns the weight vector used to compute results via a dot product.
getX() - Method in class jsat.utils.Tuple3
 
getXi() - Method in class jsat.clustering.OPTICS
Returns the xi value used in OPTICS.ExtractionMethod.XI_STEEP_ORIGINAL to produce cluster results.
getY() - Method in class jsat.utils.Tuple3
 
getZ() - Method in class jsat.utils.Tuple3
 
getzMax() - Method in class jsat.classifiers.boosting.LogitBoost
Returns the maximum miss-classification penalty used by the algorithm.
GMeans - Class in jsat.clustering.kmeans
This class provides a method of performing KMeans clustering when the value of K is not known.
GMeans() - Constructor for class jsat.clustering.kmeans.GMeans
 
GMeans(KMeans) - Constructor for class jsat.clustering.kmeans.GMeans
 
GMeans(GMeans) - Constructor for class jsat.clustering.kmeans.GMeans
 
GoldenSearch - Class in jsat.math.optimization
Minimizes a single variate function in the same way that
GoldenSearch() - Constructor for class jsat.math.optimization.GoldenSearch
 
GoldenSearch - Class in jsat.math.optimization.oned
 
GoldenSearch() - Constructor for class jsat.math.optimization.oned.GoldenSearch
 
grad(double, double, double, double) - Method in enum jsat.classifiers.linear.kernelized.CSKLR.UpdateMode
Get the gradient value that should be applied based on the input variable from the current model
GradFunction(DataSet, LossFunc) - Constructor for class jsat.classifiers.linear.LinearBatch.GradFunction
 
GRADIENT - Static variable in class jsat.math.optimization.RosenbrockFunction
The gradient of the Rosenbrock function
gradientError(double, double) - Method in enum jsat.classifiers.linear.StochasticMultinomialLogisticRegression.Prior
 
gradientError(double, double, double) - Method in enum jsat.classifiers.linear.StochasticMultinomialLogisticRegression.Prior
 
GradientUpdater - Interface in jsat.math.optimization.stochastic
This interface defines the method of updating some weight vector using a gradient and a learning rate.
GreekLetters - Class in jsat.text
 
GreekLetters() - Constructor for class jsat.text.GreekLetters
 
GridDataGenerator - Class in jsat.utils
This is a utility to generate data in a grid fashion.
GridDataGenerator(ContinuousDistribution, Random, int...) - Constructor for class jsat.utils.GridDataGenerator
Creates a new Grid data generator, that can be queried for new data sets.
GridDataGenerator(ContinuousDistribution, int...) - Constructor for class jsat.utils.GridDataGenerator
Creates a new Grid data generator, that can be queried for new data sets.
GridDataGenerator() - Constructor for class jsat.utils.GridDataGenerator
Creates a new grid data generator for a 2 x 5 with uniform noise in the range [-1/4, 1/4]
GridSearch - Class in jsat.parameters
GridSearch is a simple method for tuning the parameters of a classification or regression algorithm.
GridSearch(Regressor, int) - Constructor for class jsat.parameters.GridSearch
Creates a new GridSearch to tune the specified parameters of a regression model.
GridSearch(Classifier, int) - Constructor for class jsat.parameters.GridSearch
Creates a new GridSearch to tune the specified parameters of a classification model.
GridSearch(GridSearch) - Constructor for class jsat.parameters.GridSearch
Copy constructor
guessAlpha(DataSet) - Static method in class jsat.classifiers.linear.kernelized.ALMA2K
Guesses the distribution to use for the α parameter
guessAlpha(DataSet) - Static method in class jsat.classifiers.linear.NewGLMNET
Guess the distribution to use for the trade off term term (double) α in Elastic Net regularization.
guessAlpha(DataSet) - Static method in class jsat.classifiers.neuralnetwork.RBFNet
Guesses the distribution for the RBFNet.setAlpha(double) parameter
guessAlpha(DataSet) - Static method in class jsat.distributions.kernels.SigmoidKernel
Guesses a distribution for the α parameter
guessC(DataSet) - Static method in class jsat.classifiers.linear.kernelized.DUOL
Guesses the distribution to use for the C parameter
guessC(DataSet) - Static method in class jsat.classifiers.linear.LogisticRegressionDCD
Guess the distribution to use for the regularization term C in Logistic Regression.
guessC(DataSet) - Static method in class jsat.classifiers.linear.NewGLMNET
Guess the distribution to use for the regularization term C in Logistic Regression.
guessC(DataSet) - Static method in class jsat.classifiers.linear.NHERD
Guess the distribution to use for the regularization term C .
guessC(DataSet) - Static method in class jsat.classifiers.linear.PassiveAggressive
Guess the distribution to use for the regularization term C in PassiveAggressive.
guessC(DataSet) - Static method in class jsat.classifiers.linear.SCW
Guess the distribution to use for the regularization term C .
guessC(DataSet) - Static method in class jsat.classifiers.linear.SPA
Guess the distribution to use for the regularization term C in Support PassiveAggressive.
guessC(DataSet) - Static method in class jsat.classifiers.svm.DCDs
Guess the distribution to use for the regularization term C in a SVM.
guessC(DataSet) - Static method in class jsat.classifiers.svm.LSSVM
Guess the distribution to use for the regularization term C in a LS-SVM.
guessC(DataSet) - Static method in class jsat.classifiers.svm.PlattSMO
Guess the distribution to use for the regularization term C in a SVM.
guessC(DataSet) - Static method in class jsat.distributions.kernels.RationalQuadraticKernel
Guess the distribution to use for the C parameter.
guessC(DataSet) - Static method in class jsat.distributions.kernels.SigmoidKernel
Guesses a distribution for the α parameter
guessDegree(DataSet) - Static method in class jsat.distributions.kernels.PolynomialKernel
Guesses the distribution to use for the degree parameter
guessDimensions(DataSet) - Static method in class jsat.datatransform.kernel.KernelPCA
 
guessDimensions(DataSet) - Static method in class jsat.datatransform.WhitenedPCA
 
guessEntropyThreshold(DataSet) - Static method in class jsat.classifiers.svm.extended.CPM
Provides a distribution of reasonable values for the CPM.setEntropyThreshold(double) parameter
guessesNeeded() - Method in class jsat.math.rootfinding.Bisection
 
guessesNeeded() - Method in class jsat.math.rootfinding.RiddersMethod
 
guessesNeeded() - Method in interface jsat.math.rootfinding.RootFinder
Different root finding methods require different numbers of initial guesses.
guessesNeeded() - Method in class jsat.math.rootfinding.Secant
 
guessesNeeded() - Method in class jsat.math.rootfinding.Zeroin
 
guessEta(DataSet) - Static method in class jsat.classifiers.linear.kernelized.BOGD
Guesses the distribution to use for the η parameter
guessEta(DataSet) - Static method in class jsat.classifiers.linear.SCW
Guess the distribution to use for the regularization term η .
guessK(DataSet) - Static method in class jsat.classifiers.knn.DANN
Guesses the distribution to use for the number of neighbors to consider
guessKn(DataSet) - Static method in class jsat.classifiers.knn.DANN
Guesses the distribution to use for the number of neighbors to consider
guessLambda(DataSet) - Static method in class jsat.classifiers.boosting.EmphasisBoost
Guesses the distribution to use for the λ parameter
guessLambda(DataSet) - Static method in class jsat.classifiers.linear.kernelized.KernelSGD
Guess the distribution to use for the regularization term λ .
guessLambda(DataSet) - Static method in class jsat.classifiers.svm.extended.CPM
Provides a distribution of reasonable values for the λ parameter
guessLambda(DataSet) - Static method in class jsat.classifiers.svm.extended.OnlineAMM
Guess the distribution to use for the regularization term λ in AMM.
guessLambda(DataSet) - Static method in class jsat.regression.KernelRidgeRegression
Guesses the distribution to use for the λ parameter
guessLambda0(DataSet) - Static method in class jsat.classifiers.linear.LinearBatch
Guess the distribution to use for the regularization term λ0 .
guessLambda0(DataSet) - Static method in class jsat.classifiers.linear.LinearSGD
Guess the distribution to use for the regularization term λ0 .
guessLambda1(DataSet) - Static method in class jsat.classifiers.linear.LinearSGD
Guess the distribution to use for the regularization term λ1 .
guessMaxCoeff(DataSet) - Static method in class jsat.classifiers.linear.kernelized.BOGD
Guesses the distribution to use for the MaxCoeff parameter
guessNeighbors(DataSet) - Static method in class jsat.classifiers.knn.LWL
Guesses the distribution to use for the number of neighbors to consider
guessNeighbors(DataSet) - Static method in class jsat.classifiers.knn.NearestNeighbour
Guesses the distribution to use for the number of neighbors to consider
guessNumberOfBins(DataSet) - Static method in class jsat.datatransform.NumericalToHistogram
Attempts to guess the number of bins to use
guessNumCentroids(DataSet) - Static method in class jsat.classifiers.neuralnetwork.RBFNet
Guesses the distribution for the RBFNet.setNumCentroids(int) parameter
guessOmega(DataSet) - Static method in class jsat.distributions.kernels.PukKernel
Guesses the distribution to use for the ω parameter
guessP(DataSet) - Static method in class jsat.classifiers.neuralnetwork.RBFNet
Guesses the distribution for the RBFNet.setP(int) parameter
guessProjectedDimension(DataSet) - Static method in class jsat.datatransform.JLTransform
 
guessR(DataSet) - Static method in class jsat.classifiers.linear.AROW
Guess the distribution to use for the regularization term r .
guessR(DataSet) - Static method in class jsat.classifiers.linear.kernelized.CSKLR
Guesses the distribution to use for the R parameter
guessR(DataSet) - Static method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Guesses the distribution to use for the R parameter
guessR(DataSet) - Static method in class jsat.classifiers.linear.kernelized.OSKL
Guesses the distribution to use for the R parameter
guessRegularization(DataSet) - Static method in class jsat.classifiers.linear.kernelized.BOGD
Guesses the distribution to use for the Regularization parameter
guessRegularization(DataSet) - Static method in class jsat.classifiers.svm.Pegasos
Guess the distribution to use for the regularization term Pegasos.setRegularization(double) in Pegasos.
guessSigma(DataSet) - Method in class jsat.datatransform.kernel.RFF_RBF
Guess the distribution to use for the kernel width term σ in the RBF kernel being approximated.
guessSigma(DataSet) - Method in class jsat.distributions.kernels.GeneralRBFKernel
Guess the distribution to use for the kernel width term σ in the General RBF kernel.
guessSigma(DataSet, DistanceMetric) - Static method in class jsat.distributions.kernels.GeneralRBFKernel
Guess the distribution to use for the kernel width term σ in the General RBF kernel.
guessSigma(DataSet) - Static method in class jsat.distributions.kernels.PukKernel
Guesses the distribution to use for the λ parameter
guessSigma(DataSet) - Static method in class jsat.distributions.kernels.RBFKernel
Guess the distribution to use for the kernel width term σ in the RBF kernel.

H

h(int) - Static method in class jsat.utils.IntDoubleMap
Returns a non-negative hash value
h(long) - Static method in class jsat.utils.LongDoubleMap
Returns a non-negative hash value
HamerlyKMeans - Class in jsat.clustering.kmeans
An efficient implementation of the K-Means algorithm.
HamerlyKMeans(DistanceMetric, SeedSelectionMethods.SeedSelection, Random) - Constructor for class jsat.clustering.kmeans.HamerlyKMeans
Creates a new k-Means object
HamerlyKMeans(DistanceMetric, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.kmeans.HamerlyKMeans
Creates a new k-Means object
HamerlyKMeans() - Constructor for class jsat.clustering.kmeans.HamerlyKMeans
Creates a new k-Means object
HamerlyKMeans(HamerlyKMeans) - Constructor for class jsat.clustering.kmeans.HamerlyKMeans
 
hashCode() - Method in class jsat.classifiers.evaluation.Accuracy
 
hashCode() - Method in class jsat.classifiers.evaluation.AUC
 
hashCode() - Method in interface jsat.classifiers.evaluation.ClassificationScore
 
hashCode() - Method in class jsat.classifiers.evaluation.F1Score
 
hashCode() - Method in class jsat.classifiers.evaluation.FbetaScore
 
hashCode() - Method in class jsat.classifiers.evaluation.Kappa
 
hashCode() - Method in class jsat.classifiers.evaluation.LogLoss
 
hashCode() - Method in class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
hashCode() - Method in class jsat.classifiers.evaluation.Precision
 
hashCode() - Method in class jsat.classifiers.evaluation.Recall
 
hashCode() - Method in class jsat.distributions.Beta
 
hashCode() - Method in class jsat.distributions.Cauchy
 
hashCode() - Method in class jsat.distributions.ChiSquared
 
hashCode() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
hashCode() - Method in class jsat.distributions.Exponential
 
hashCode() - Method in class jsat.distributions.FisherSendor
 
hashCode() - Method in class jsat.distributions.Gamma
 
hashCode() - Method in class jsat.distributions.Kolmogorov
 
hashCode() - Method in class jsat.distributions.Laplace
 
hashCode() - Method in class jsat.distributions.Levy
 
hashCode() - Method in class jsat.distributions.Logistic
 
hashCode() - Method in class jsat.distributions.LogNormal
 
hashCode() - Method in class jsat.distributions.MaxwellBoltzmann
 
hashCode() - Method in class jsat.distributions.Normal
 
hashCode() - Method in class jsat.distributions.Pareto
 
hashCode() - Method in class jsat.distributions.Rayleigh
 
hashCode() - Method in class jsat.distributions.StudentT
 
hashCode() - Method in class jsat.distributions.Uniform
 
hashCode() - Method in class jsat.distributions.Weibull
 
hashCode() - Method in class jsat.linear.SparseVector
 
hashCode() - Method in class jsat.linear.Vec
Provides a hashcode for Vectors.
hashCode() - Method in class jsat.linear.VecPaired
 
hashCode() - Method in class jsat.math.Complex
 
hashCode() - Method in class jsat.parameters.Parameter
 
hashCode() - Method in class jsat.regression.evaluation.CoefficientOfDetermination
 
hashCode() - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
hashCode() - Method in class jsat.regression.evaluation.MeanSquaredError
 
hashCode() - Method in interface jsat.regression.evaluation.RegressionScore
 
hashCode() - Method in class jsat.regression.evaluation.RelativeAbsoluteError
 
hashCode() - Method in class jsat.regression.evaluation.RelativeSquaredError
 
hashCode() - Method in class jsat.utils.Tuple3
 
HashedTextDataLoader - Class in jsat.text
This class provides a framework for loading datasets made of Text documents as hashed feature vectors.
HashedTextDataLoader(Tokenizer, WordWeighting) - Constructor for class jsat.text.HashedTextDataLoader
 
HashedTextDataLoader(int, Tokenizer, WordWeighting) - Constructor for class jsat.text.HashedTextDataLoader
 
HashedTextVectorCreator - Class in jsat.text
Hashed Text Vector Creator exists to convert a text string into a Vec using feature hashing.
HashedTextVectorCreator(int, Tokenizer, WordWeighting) - Constructor for class jsat.text.HashedTextVectorCreator
Creates a new text vector creator that works with hash-trick features
hasStoredClustering() - Method in class jsat.clustering.hierarchical.PriorityHAC
The PriorityHAC stores its merging order, so that multiple clusterings can of different sizes can be obtained without having to recluster the data set.
HDBSCAN - Class in jsat.clustering
HDBSCAN is a density based clustering algorithm that is an improvement over DBSCAN.
HDBSCAN() - Constructor for class jsat.clustering.HDBSCAN
Creates a new HDBSCAN object using a threshold of 15 points to form a cluster.
HDBSCAN(int) - Constructor for class jsat.clustering.HDBSCAN
Creates a new HDBSCAN using the simplified form, where the only parameter is a single value.
HDBSCAN(DistanceMetric, int) - Constructor for class jsat.clustering.HDBSCAN
Creates a new HDBSCAN using the simplified form, where the only parameter is a single value.
HDBSCAN(DistanceMetric, int, VectorCollectionFactory<Vec>) - Constructor for class jsat.clustering.HDBSCAN
Creates a new HDBSCAN using the simplified form, where the only parameter is a single value.
HDBSCAN(DistanceMetric, int, int, VectorCollectionFactory<Vec>) - Constructor for class jsat.clustering.HDBSCAN
Creates a new HDBSCAN using the full specification of the algorithm, where two parameters may be altered.
HDBSCAN(HDBSCAN) - Constructor for class jsat.clustering.HDBSCAN
Copy constructor
headSet(Integer) - Method in class jsat.utils.IntSortedSet
 
hess(Matrix) - Static method in class jsat.linear.HessenbergForm
 
hess(Matrix, ExecutorService) - Static method in class jsat.linear.HessenbergForm
Alters the matrix A such that it is in upper Hessenberg form.
HessenbergForm - Class in jsat.linear
 
HessenbergForm() - Constructor for class jsat.linear.HessenbergForm
 
HingeLoss - Class in jsat.lossfunctions
The HingeLoss loss function for classification L(x, y) = max(0, 1-y*x) .
HingeLoss() - Constructor for class jsat.lossfunctions.HingeLoss
 
history - Variable in class jsat.driftdetectors.BaseDriftDetector
Holds the associated object history.
holdOut - Variable in class jsat.classifiers.calibration.BinaryCalibration
The proportion of the data set to hold out for calibration
hornerPoly(double[], double) - Static method in class jsat.math.MathTricks
This evaluates a polynomial using Horner's method.
hornerPolyR(double[], double) - Static method in class jsat.math.MathTricks
This evaluates a polynomial using Horner's method.
HuberLoss - Class in jsat.lossfunctions
The HuberLoss loss function for regression.
HuberLoss(double) - Constructor for class jsat.lossfunctions.HuberLoss
Creates a new HuberLoss loss
HuberLoss() - Constructor for class jsat.lossfunctions.HuberLoss
Creates a new HuberLoss loss thresholded at 1
hypoths - Variable in class jsat.classifiers.boosting.AdaBoostM1
The list of weak hypothesis
hypoths - Variable in class jsat.classifiers.boosting.EmphasisBoost
The list of weak hypothesis
hypoths - Variable in class jsat.classifiers.boosting.ModestAdaBoost
The list of weak hypothesis
hypWeights - Variable in class jsat.classifiers.boosting.AdaBoostM1
The weights for each weak learner
hypWeights - Variable in class jsat.classifiers.boosting.EmphasisBoost
The weights for each weak learner
hypWeights - Variable in class jsat.classifiers.boosting.ModestAdaBoost
The weights for each weak learner

I

I() - Static method in class jsat.math.Complex
Returns the complex number representing sqrt(-1)
ID3 - Class in jsat.classifiers.trees
 
ID3() - Constructor for class jsat.classifiers.trees.ID3
 
ImportanceByUses - Class in jsat.classifiers.trees
 
ImportanceByUses(boolean) - Constructor for class jsat.classifiers.trees.ImportanceByUses
 
ImportanceByUses() - Constructor for class jsat.classifiers.trees.ImportanceByUses
 
ImpurityScore - Class in jsat.classifiers.trees
ImpurityScore provides a measure of the impurity of a set of data points respective to their class labels.
ImpurityScore(int, ImpurityScore.ImpurityMeasure) - Constructor for class jsat.classifiers.trees.ImpurityScore
Creates a new impurity score that can be updated
ImpurityScore.ImpurityMeasure - Enum in jsat.classifiers.trees
Different methods of measuring the impurity in a set of data points based on nominal class labels
Imputer - Class in jsat.datatransform
Imputes missing values in a dataset by finding reasonable default values.
Imputer(DataSet<?>) - Constructor for class jsat.datatransform.Imputer
 
Imputer(DataSet<?>, Imputer.NumericImputionMode) - Constructor for class jsat.datatransform.Imputer
 
Imputer(Imputer) - Constructor for class jsat.datatransform.Imputer
Copy constructor
Imputer.NumericImputionMode - Enum in jsat.datatransform
 
incProb(int, double) - Method in class jsat.classifiers.CategoricalResults
Increments the stored probability that a sample belongs to a given category
increment(int, double) - Method in class jsat.linear.ConcatenatedVec
 
increment(int, int, double) - Method in class jsat.linear.Matrix
Alters the current matrix at index (i,j) to be equal to Ai,j = Ai,j + value
increment(int, int, double) - Method in class jsat.linear.MatrixOfVecs
 
increment(int, double) - Method in class jsat.linear.ShiftedVec
 
increment(int, int, double) - Method in class jsat.linear.SparseMatrix
 
increment(int, double) - Method in class jsat.linear.SparseVector
Increments the value at the given index by the given value.
increment(int, double) - Method in class jsat.linear.Vec
Increments the value stored at a specified index in the vector
increment(int, double) - Method in class jsat.utils.IntDoubleMap
 
increment(int, double) - Method in class jsat.utils.IntDoubleMapArray
 
increment(long, double) - Method in class jsat.utils.LongDoubleMap
 
INCREMENT_SEEDS - Static variable in class jsat.utils.random.RandomUtil
This controls whether or not RandomUtil.getRandom() will cause a change in the RandomUtil.DEFAULT_SEED each time it is called.
IncrementalCollection<V extends Vec> - Interface in jsat.linear.vectorcollection
This interface is for Vector Collections that support incremental construction.
index(int) - Method in class jsat.utils.IndexTable
Given the index i into what would be the sorted array, the index in the unsorted original array is returned.
indexes - Variable in class jsat.linear.SparseVector
The mapping to true index values
indexFunc(double, int) - Method in class jsat.math.IndexFunction
An index function, meant to be applied to vectors where the value to be computed may vary based on the position in the vector of the value.
indexFunc(double, int) - Method in class jsat.text.wordweighting.BinaryWordPresent
 
indexFunc(double, int) - Method in class jsat.text.wordweighting.OkapiBM25
 
indexFunc(double, int) - Method in class jsat.text.wordweighting.TfIdf
 
indexFunc(double, int) - Method in class jsat.text.wordweighting.WordCount
 
IndexFunction - Class in jsat.math
 
IndexFunction() - Constructor for class jsat.math.IndexFunction
 
IndexTable - Class in jsat.utils
The index table provides a way of accessing the sorted view of an array or list, without ever sorting the elements of said list.
IndexTable(int) - Constructor for class jsat.utils.IndexTable
Creates a new index table of a specified size that is in linear order.
IndexTable(double[]) - Constructor for class jsat.utils.IndexTable
Creates a new index table based on the given array.
IndexTable(T[]) - Constructor for class jsat.utils.IndexTable
Creates a new index table based on the given array.
IndexTable(List<T>) - Constructor for class jsat.utils.IndexTable
Creates a new index table based on the given list.
IndexTable(List<T>, Comparator<T>) - Constructor for class jsat.utils.IndexTable
Creates a new index table based on the given list and comparator.
IndexValue - Class in jsat.linear
The value at a specified index for one dimension.
IndexValue(int, double) - Constructor for class jsat.linear.IndexValue
Creates a new IndexValue
init(Vec, int, Random) - Method in interface jsat.classifiers.neuralnetwork.initializers.BiastInitializer
Performs the initialization of the given vector of bias values
init(Vec, int, Random) - Method in class jsat.classifiers.neuralnetwork.initializers.ConstantInit
 
init(Matrix, Random) - Method in class jsat.classifiers.neuralnetwork.initializers.GaussianNormalInit
 
init(Vec, int, Random) - Method in class jsat.classifiers.neuralnetwork.initializers.GaussianNormalInit
 
init(Matrix, Random) - Method in class jsat.classifiers.neuralnetwork.initializers.TanhInitializer
 
init(Vec, int, Random) - Method in class jsat.classifiers.neuralnetwork.initializers.TanhInitializer
 
init(Matrix, Random) - Method in interface jsat.classifiers.neuralnetwork.initializers.WeightInitializer
Initializes the values of the given weight matrix
initialLoad() - Method in class jsat.text.HashedTextDataLoader
This method will load all the text documents that make up the original data set from their source.
initialLoad() - Method in class jsat.text.TextDataLoader
This method will load all the text documents that make up the original data set from their source.
InPlaceInvertibleTransform - Interface in jsat.datatransform
This interface behaves exactly as InPlaceTransform specifies, with the addition of an in-place "reverse" method that can be used to alter any given transformed data point back into an approximation of the original vector, without having to new vector object, but altering the one given.
InPlaceTransform - Interface in jsat.datatransform
An In Place Transform is one that has the same number of categorical and numeric features as the input.
insert(V) - Method in class jsat.linear.vectorcollection.CoverTree
 
insert(V) - Method in interface jsat.linear.vectorcollection.IncrementalCollection
Incrementally adds the given datapoint into the collection
insert(V) - Method in class jsat.linear.vectorcollection.RandomBallCover
 
insert(V) - Method in class jsat.linear.vectorcollection.VectorArray
 
insert(V) - Method in class jsat.linear.vectorcollection.VPTree
 
insert(T, double) - Method in class jsat.utils.FibHeap
 
insertionSort(double[], int, int) - Static method in class jsat.utils.QuickSort
 
InsertMissingValuesTransform - Class in jsat.datatransform
This transform mostly exists for testing code.
InsertMissingValuesTransform(double) - Constructor for class jsat.datatransform.InsertMissingValuesTransform
 
InsertMissingValuesTransform(double, Random) - Constructor for class jsat.datatransform.InsertMissingValuesTransform
 
INT_MASK - Static variable in class jsat.utils.ClosedHashingUtil
Applying this bitwise AND mask to a long will give the bits corresponding to an integer.
IntDoubleMap - Class in jsat.utils
A hash map for storing the primitive types of integers (as keys) to doubles (as table).
IntDoubleMap() - Constructor for class jsat.utils.IntDoubleMap
 
IntDoubleMap(int) - Constructor for class jsat.utils.IntDoubleMap
 
IntDoubleMap(Map<Integer, Double>) - Constructor for class jsat.utils.IntDoubleMap
 
IntDoubleMap(int, float) - Constructor for class jsat.utils.IntDoubleMap
 
IntDoubleMapArray - Class in jsat.utils
Provides a map from integers to doubles backed by index into an array.
IntDoubleMapArray() - Constructor for class jsat.utils.IntDoubleMapArray
 
IntDoubleMapArray(int) - Constructor for class jsat.utils.IntDoubleMapArray
 
intK(double) - Method in class jsat.distributions.empirical.kernelfunc.BiweightKF
 
intK(double) - Method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
 
intK(double) - Method in class jsat.distributions.empirical.kernelfunc.GaussKF
 
intK(double) - Method in interface jsat.distributions.empirical.kernelfunc.KernelFunction
Computes the value of the finite integral from -Infinity up to the value u, of the function given by KernelFunction.k(double)
intK(double) - Method in class jsat.distributions.empirical.kernelfunc.TriweightKF
 
intK(double) - Method in class jsat.distributions.empirical.kernelfunc.UniformKF
 
IntList - Class in jsat.utils
Provides a modifiable implementation of a List using a int array.
IntList() - Constructor for class jsat.utils.IntList
Creates a new IntList
IntList(int) - Constructor for class jsat.utils.IntList
Creates a new IntList with the given initial capacity
IntList(Collection<Integer>) - Constructor for class jsat.utils.IntList
 
IntParameter - Class in jsat.parameters
An integer parameter that may be altered.
IntParameter() - Constructor for class jsat.parameters.IntParameter
 
IntPriorityQueue - Class in jsat.utils
This class represents a priority queue specifically designed to contain integer keys, and uses less memory then a PriorityQueue filled with integers.
IntPriorityQueue() - Constructor for class jsat.utils.IntPriorityQueue
Creates a new integer priority queue using IntPriorityQueue.Mode.STANDARD
IntPriorityQueue(int, Comparator<Integer>) - Constructor for class jsat.utils.IntPriorityQueue
Creates a new integer priority queue using the specified comparison and IntPriorityQueue.Mode.STANDARD
IntPriorityQueue(int, IntPriorityQueue.Mode) - Constructor for class jsat.utils.IntPriorityQueue
Creates a new integer priority queue
IntPriorityQueue(int, Comparator<Integer>, IntPriorityQueue.Mode) - Constructor for class jsat.utils.IntPriorityQueue
Creates a new integer priority queue
IntPriorityQueue.Mode - Enum in jsat.utils
Sets the mode used for the priority queue.
IntraClusterEvaluation - Interface in jsat.clustering.evaluation.intra
This interface defines the contract for a method to evaluate the intra-cluster distance.
IntraClusterSumEvaluation - Class in jsat.clustering.evaluation
Evaluates a cluster based on the sum of scores for some IntraClusterEvaluation applied to each cluster.
IntraClusterSumEvaluation(IntraClusterEvaluation) - Constructor for class jsat.clustering.evaluation.IntraClusterSumEvaluation
Creates a new cluster evaluation that returns the sum of the intra cluster evaluations
IntraClusterSumEvaluation(IntraClusterSumEvaluation) - Constructor for class jsat.clustering.evaluation.IntraClusterSumEvaluation
Copy constructor
IntSet - Class in jsat.utils
A utility class for efficiently storing a set of integers.
IntSet() - Constructor for class jsat.utils.IntSet
Creates a new empty integer set
IntSet(int) - Constructor for class jsat.utils.IntSet
Creates an empty integer set pre-allocated to store a specific number of items
IntSet(int, float) - Constructor for class jsat.utils.IntSet
Creates an empty integer set pre-allocated to store a specific number of items
IntSet(Set<Integer>) - Constructor for class jsat.utils.IntSet
Creates a new set of integers from the given set
IntSet(Collection<Integer>) - Constructor for class jsat.utils.IntSet
Creates a set of integers from the given collection
IntSetFixedSize - Class in jsat.utils
A set for integers that is of a fixed initial size, and can only accept integers in the range [0, size).
IntSetFixedSize(int) - Constructor for class jsat.utils.IntSetFixedSize
Creates a new fixed size int set
IntSortedSet - Class in jsat.utils
A utility class for efficiently storing a set of integers.
IntSortedSet(int) - Constructor for class jsat.utils.IntSortedSet
 
IntSortedSet(Set<Integer>) - Constructor for class jsat.utils.IntSortedSet
Creates a new set of integers from the given set
IntSortedSet(Collection<Integer>) - Constructor for class jsat.utils.IntSortedSet
Creates a set of integers from the given collection
IntSortedSet() - Constructor for class jsat.utils.IntSortedSet
 
invBetaIncReg(double, double, double) - Static method in class jsat.math.SpecialMath
Computes the inverse of the incomplete beta function, Ip-1(a,b), such that Ix(a, b) = p.
invCdf(double) - Method in class jsat.distributions.Beta
 
invCdf(double) - Method in class jsat.distributions.Cauchy
 
invCdf(double) - Method in class jsat.distributions.ChiSquared
 
invCdf(double) - Method in class jsat.distributions.ContinuousDistribution
 
invCdf(double) - Method in class jsat.distributions.discrete.DiscreteDistribution
 
invCdf(double, Function) - Method in class jsat.distributions.discrete.DiscreteDistribution
 
invCdf(double) - Method in class jsat.distributions.discrete.UniformDiscrete
 
invCdf(double) - Method in class jsat.distributions.Distribution
Computes the inverse Cumulative Density Function (CDF-1) at the given point.
invCdf(double, Function) - Method in class jsat.distributions.Distribution
This method is provided as a quick helper function, as any CDF has a 1 to 1 mapping with an inverse, CDF.-1.
invCdf(double) - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
invCdf(double) - Method in class jsat.distributions.Exponential
 
invCdf(double) - Method in class jsat.distributions.FisherSendor
 
invCdf(double) - Method in class jsat.distributions.Gamma
 
invCdf(double) - Method in class jsat.distributions.Kolmogorov
 
invCdf(double) - Method in class jsat.distributions.Laplace
 
invCdf(double) - Method in class jsat.distributions.Levy
 
invCdf(double) - Method in class jsat.distributions.Logistic
 
invCdf(double) - Method in class jsat.distributions.LogNormal
 
invCdf(double) - Method in class jsat.distributions.LogUniform
 
invCdf(double) - Method in class jsat.distributions.MaxwellBoltzmann
 
invcdf(double, double, double) - Static method in class jsat.distributions.Normal
 
invCdf(double) - Method in class jsat.distributions.Normal
 
invCdf(double) - Method in class jsat.distributions.Pareto
 
invCdf(double) - Method in class jsat.distributions.Rayleigh
 
invCdf(double) - Method in class jsat.distributions.StudentT
 
invCdf(double) - Method in class jsat.distributions.TruncatedDistribution
 
invCdf(double) - Method in class jsat.distributions.Uniform
 
invCdf(double) - Method in class jsat.distributions.Weibull
 
invErf(double) - Static method in class jsat.math.SpecialMath
 
invErfc(double) - Static method in class jsat.math.SpecialMath
 
inverse(DataPoint) - Method in class jsat.datatransform.FastICA
 
inverse(DataPoint) - Method in interface jsat.datatransform.InvertibleTransform
Applies the inverse or "reverse" transform to approximately undo the effect of DataTransform.transform(jsat.classifiers.DataPoint) to recover an approximation of the original data point.
inverse(DataPoint) - Method in class jsat.datatransform.LinearTransform
 
inverse(DataPoint) - Method in class jsat.datatransform.ZeroMeanTransform
 
InverseDecay - Class in jsat.math.decayrates
Decays an input by the inverse of the amount of time that has occurred, the max time being irrelevant.
InverseDecay(double, double) - Constructor for class jsat.math.decayrates.InverseDecay
Creates a new Inverse decay rate
InverseDecay() - Constructor for class jsat.math.decayrates.InverseDecay
Creates a new Inverse Decay rate
InverseOfTransform - Class in jsat.datatransform
Creates a new Transform object that simply uses the inverse of an InvertibleTransform as a regular transform.
InverseOfTransform(InvertibleTransform) - Constructor for class jsat.datatransform.InverseOfTransform
Creates a new transform that uses the transform of the given transform
InverseOfTransform(InverseOfTransform) - Constructor for class jsat.datatransform.InverseOfTransform
Copy constructor
InvertibleTransform - Interface in jsat.datatransform
A InvertibleTransform is one in which any given transformed vector can be inverse to recover an approximation of the original vector when using a transform that implements this interface.
invGammaP(double, double) - Static method in class jsat.math.SpecialMath
Finds the value x such that P(a,x) = p.
InvK - Variable in class jsat.distributions.kernels.KernelPoint
 
InvKExpanded - Variable in class jsat.distributions.kernels.KernelPoint
 
invokeAll(Collection<? extends Callable<T>>) - Method in class jsat.utils.FakeExecutor
 
invokeAll(Collection<? extends Callable<T>>, long, TimeUnit) - Method in class jsat.utils.FakeExecutor
 
invokeAny(Collection<? extends Callable<T>>) - Method in class jsat.utils.FakeExecutor
 
invokeAny(Collection<? extends Callable<T>>, long, TimeUnit) - Method in class jsat.utils.FakeExecutor
 
invPdf(double) - Method in class jsat.distributions.Normal
 
invsFunc - Static variable in class jsat.math.MathTricks
Convenience object for taking the inverse (x-1) of the first index.
invXlnX(double) - Static method in class jsat.math.SpecialMath
 
iota - Static variable in class jsat.text.GreekLetters
 
isAggressive() - Method in class jsat.classifiers.linear.ROMMA
Returns whether or not the aggressive variant of ROMMA is used
isAutoFeatureSample() - Method in class jsat.classifiers.trees.RandomForest
Returns true if heuristics are currently in use for the number of features, or false if the number has been specified.
isAutoSetRegularization() - Method in class jsat.classifiers.linear.BBR
Returns whether or not the algorithm will attempt to select the regularization term automatically
isAveraged() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Returns whether or not the averaged or last hypothesis is used
isBinaryCategoricalSplitting() - Method in class jsat.classifiers.trees.ExtraTree
Returns whether or not binary splitting is used for nominal features
isCIsomap() - Method in class jsat.datatransform.visualization.Isomap
 
isClipping() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns whether or not coefficient clipping is on.
isComplex() - Method in class jsat.linear.EigenValueDecomposition
Indicates wether or not the EVD contains complex eigen values.
isConcurrentTraining() - Method in class jsat.classifiers.OneVSOne
 
isDiagonalOnly() - Method in class jsat.classifiers.linear.AROW
Returns true if the covariance matrix is restricted to its diagonal entries
isDiagonalOnly() - Method in class jsat.classifiers.linear.SCW
Returns true if the covariance matrix is restricted to its diagonal entries
isDrifting() - Method in class jsat.driftdetectors.BaseDriftDetector
Returns true if the algorithm believes that drift has definitely occurred.
isFinalizeAfterTraining() - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
Returns true if the model will be finalized after batch training.
isFullRank() - Method in class jsat.linear.SingularValueDecomposition
Indicates whether or not the input matrix was of full rank, full rank matrices are more numerically stable.
isIndiscemible() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.CosineDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
isIndiscemible() - Method in interface jsat.linear.distancemetrics.DistanceMetric
Returns true if this distance metric obeys the rule that, for any x and y ∈ S
d(x, y) = 0 if and only if x = y
isIndiscemible() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.KernelDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.PearsonDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
isIndiscemible() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
isInftNormCriterion() - Method in class jsat.math.optimization.BFGS
Returns whether or not the infinity norm (true) or 2 norm (false) is used to determine convergence.
isInftNormCriterion() - Method in class jsat.math.optimization.LBFGS
Returns whether or not the infinity norm (true) or 2 norm (false) is used to determine convergence.
isInMemory() - Method in class jsat.datatransform.JLTransform
 
isInMemory() - Method in class jsat.datatransform.kernel.RFF_RBF
 
isKeepModels() - Method in class jsat.classifiers.ClassificationModelEvaluation
This will keep the models trained when evaluating the model.
isKeepModels() - Method in class jsat.regression.RegressionModelEvaluation
This will keep the models trained when evaluating the model.
isLeaf() - Method in class jsat.classifiers.trees.DecisionTree.Node
 
isLeaf() - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns true if the node is a leaf, meaning it has no valid paths to any children
isLinux() - Static method in class jsat.utils.SystemInfo
 
isMac() - Static method in class jsat.utils.SystemInfo
 
isModificationOne() - Method in class jsat.classifiers.svm.PlattSMO
Returns true if modification one is in use
isNoDigits() - Method in class jsat.text.tokenizer.NaiveTokenizer
Returns true if digits are not allowed in tokens, false otherwise.
isNormalize() - Method in class jsat.classifiers.neuralnetwork.RBFNet
Returns whether or not the network is currently normalizing its neuron outputs.
Isomap - Class in jsat.datatransform.visualization
Isomap is an extension of MDS.
Isomap() - Constructor for class jsat.datatransform.visualization.Isomap
 
Isomap(int) - Constructor for class jsat.datatransform.visualization.Isomap
 
Isomap(int, boolean) - Constructor for class jsat.datatransform.visualization.Isomap
 
isOnlineVersion() - Method in class jsat.classifiers.svm.DCD
Returns whether or not the online version of the algorithm, algorithm 2 is in use.
isOtherToWhiteSpace() - Method in class jsat.text.tokenizer.NaiveTokenizer
Returns whether or not all other illegal characters are treated as whitespace, or ignored completely.
IsotonicCalibration - Class in jsat.classifiers.calibration
Isotonic Calibration is non-parametric, and only assumes that the underlying distribution from negative to positive examples is strictly a non-decreasing function.
IsotonicCalibration(BinaryScoreClassifier, BinaryCalibration.CalibrationMode) - Constructor for class jsat.classifiers.calibration.IsotonicCalibration
Creates a new Isotonic Calibration object
IsotonicCalibration(IsotonicCalibration) - Constructor for class jsat.classifiers.calibration.IsotonicCalibration
Copy constructor
isPathDisabled(int) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
isPathDisabled(int) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns true if the path to the specified child is disabled, meaning it can not be traveled to.
isPCSampling() - Method in class jsat.clustering.GapStatistic
 
isPreWhitened() - Method in class jsat.datatransform.FastICA
 
isProjectionStep() - Method in class jsat.classifiers.svm.Pegasos
Returns whether or not the projection step is in use after each iteration
isReScale() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Returns if scaling is in use
isReTrain() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
Returns true if this metric will indicate a need to be retrained once it has been trained once.
isReuseSameCVFolds() - Method in class jsat.parameters.ModelSearch
 
isRMSE() - Method in class jsat.regression.evaluation.MeanSquaredError
 
isSelfTuned() - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
isShutdown() - Method in class jsat.utils.FakeExecutor
 
isSparce() - Method in class jsat.linear.DenseMatrix
 
isSparce() - Method in class jsat.linear.Matrix
Returns true if the matrix is sparse, false otherwise
isSparce() - Method in class jsat.linear.MatrixOfVecs
 
isSparce() - Method in class jsat.linear.RandomMatrix
 
isSparce() - Method in class jsat.linear.SparseMatrix
 
isSparce() - Method in class jsat.linear.SubMatrix
 
isSparce() - Method in class jsat.linear.TransposeView
 
isSparceInput() - Method in class jsat.classifiers.bayesian.NaiveBayes
Returns true if the Classifier assumes that data points are sparce.
isSparse() - Method in class jsat.linear.ConcatenatedVec
 
isSparse() - Method in class jsat.linear.ConstantVector
 
isSparse() - Method in class jsat.linear.DenseVector
 
isSparse() - Method in class jsat.linear.Poly2Vec
 
isSparse() - Method in class jsat.linear.RandomVector
 
isSparse() - Method in class jsat.linear.ScaledVector
 
isSparse() - Method in class jsat.linear.ShiftedVec
 
isSparse() - Method in class jsat.linear.SparseVector
 
isSparse() - Method in class jsat.linear.SubVector
 
isSparse() - Method in class jsat.linear.Vec
Indicates whether or not this vector is optimized for sparce computation, meaning that most values in the vector are zero - and considered implicit.
isSparse() - Method in class jsat.linear.VecPaired
 
isSparse() - Method in class jsat.linear.VecWithNorm
 
isSparseInput() - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
Returns true if the input is assume sparse
isSquare() - Method in class jsat.linear.LUPDecomposition
 
isSquare() - Method in class jsat.linear.Matrix
Returns true if the matrix is square, meaning it has the same number of rows and columns.
isStandardized() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns whether or not the input is standardized for the priors
isStopAfterFail() - Method in class jsat.clustering.kmeans.XMeans
 
isSubadditive() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.CosineDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
isSubadditive() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
isSubadditive() - Method in interface jsat.linear.distancemetrics.DistanceMetric
Returns true if this distance metric obeys the rule that, for any x, y, and z ∈ S
d(x, z) ≤ d(x, y) + d(y, z)
isSubadditive() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.KernelDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.PearsonDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
isSubadditive() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.CosineDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
isSymmetric() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
isSymmetric() - Method in interface jsat.linear.distancemetrics.DistanceMetric
Returns true if this distance metric obeys the rule that, for any x, y, and z ∈ S
d(x, y) = d(y, x)
isSymmetric() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.KernelDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.PearsonDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
isSymmetric() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
isSymmetric(Matrix, double) - Static method in class jsat.linear.Matrix
Checks to see if the given input is approximately symmetric.
isSymmetric(Matrix) - Static method in class jsat.linear.Matrix
Checks to see if the given input is a perfectly symmetric matrix
isTerminated() - Method in class jsat.utils.FakeExecutor
 
isTrainFinalModel() - Method in class jsat.parameters.ModelSearch
 
isTrainModelsInParallel() - Method in class jsat.parameters.ModelSearch
 
isUniformSampling() - Method in class jsat.classifiers.linear.kernelized.BOGD
Returns true is uniform sampling is in use, or false if the BOGD++ sampling procedure is in use
isUseAverageModel() - Method in class jsat.classifiers.linear.kernelized.OSKL
Returns true if the average of all models is being used, or false if the last model is used
isUseBias() - Method in class jsat.classifiers.linear.ALMA2
Returns whether or not an implicit bias term is in use
isUseBias() - Method in class jsat.classifiers.linear.BBR
Returns true if a bias term is in use, false otherwise.
isUseBias() - Method in class jsat.classifiers.linear.LinearSGD
Returns whether or not an implicit bias term is in use
isUseBias() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Returns true if a bias term is in use, false otherwise.
isUseBias() - Method in class jsat.classifiers.linear.NewGLMNET
 
isUseBias() - Method in class jsat.classifiers.linear.ROMMA
Returns whether or not an implicit bias term is in use
isUseBias() - Method in class jsat.classifiers.linear.SPA
Returns true if an implicit bias term will be added, false otherwise
isUseBias() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Returns true if the bias term is in use
isUseBias() - Method in class jsat.classifiers.svm.DCD
Returns true if an implicit bias term is in use, or false if not.
isUseBias() - Method in class jsat.classifiers.svm.DCDs
Returns true if an implicit bias term is in use, or false if not.
isUseBiasTerm() - Method in class jsat.classifiers.linear.LinearBatch
 
isUseDenseSparse() - Method in class jsat.clustering.kmeans.ElkanKMeans
Returns if Dense Sparse acceleration will be used if available
isUseL1() - Method in class jsat.classifiers.svm.DCD
Returns true if the L1 form is in use
isUseL1() - Method in class jsat.classifiers.svm.DCDs
Returns true if the L1 form is in use
isUseLowerCase() - Method in class jsat.text.tokenizer.NaiveTokenizer
Returns true if letters are converted to lower case, false for case sensitive
isUseMarginUpdates() - Method in class jsat.classifiers.linear.kernelized.Projectron
Returns true if margin errors can cause updates, false if not.
isUseOutOfBagError() - Method in class jsat.classifiers.trees.RandomForest
Indicates if the out of bag error rate will be computed during training
isUseOutOfBagImportance() - Method in class jsat.classifiers.trees.RandomForest
Indicates if the out of bag feature importance will be computed during training
isUsePriors() - Method in class jsat.classifiers.bayesian.BestClassDistribution
Returns whether or not this object uses the prior probabilities for classification.
isUseWarmStarts() - Method in class jsat.parameters.GridSearch
 
isValidCategory(int) - Method in class jsat.classifiers.CategoricalData
Returns true if the given input is a valid category index for this object.
isWarmParameter() - Method in class jsat.parameters.Parameter
If true, that means this parameter is the preferred parameter to be altered when warm starting from a previous version of the same class.
isWarning() - Method in class jsat.driftdetectors.BaseDriftDetector
Returns true if the algorithm is in a warning state.
isWindows() - Static method in class jsat.utils.SystemInfo
 
item - Variable in class jsat.utils.UnionFind
 
IterableIterator<T> - Class in jsat.utils
Convenience object for being able to use the for each loop on an iterator.
IterableIterator(Iterator<T>) - Constructor for class jsat.utils.IterableIterator
 
IterativelyReweightedLeastSquares - Class in jsat.math.optimization
Provides an implementation of the Iteratively Reweighted Least Squares (IRLS) algorithm for solving certain classes of optimization problems.
IterativelyReweightedLeastSquares() - Constructor for class jsat.math.optimization.IterativelyReweightedLeastSquares
 
iterator() - Method in class jsat.linear.Vec
 
iterator() - Method in class jsat.utils.IntPriorityQueue
 
iterator() - Method in class jsat.utils.IntSet
 
iterator() - Method in class jsat.utils.IntSetFixedSize
 
iterator() - Method in class jsat.utils.IntSortedSet
 
iterator() - Method in class jsat.utils.IterableIterator
 
iterLimit - Variable in class jsat.clustering.PAM
 

J

JLTransform - Class in jsat.datatransform
The Johnson-Lindenstrauss (JL) Transform is a type of random projection down to a lower dimensional space.
JLTransform(JLTransform) - Constructor for class jsat.datatransform.JLTransform
Copy constructor
JLTransform() - Constructor for class jsat.datatransform.JLTransform
Creates a new JL Transform that uses a target dimension of 50 features.
JLTransform(int) - Constructor for class jsat.datatransform.JLTransform
Creates a new JL Transform
JLTransform(int, JLTransform.TransformMode) - Constructor for class jsat.datatransform.JLTransform
Creates a new JL Transform
JLTransform(int, JLTransform.TransformMode, boolean) - Constructor for class jsat.datatransform.JLTransform
Creates a new JL Transform
JLTransform.TransformMode - Enum in jsat.datatransform
Determines which distribution to construct the transform matrix from
jsat - package jsat
 
jsat.classifiers - package jsat.classifiers
 
jsat.classifiers.bayesian - package jsat.classifiers.bayesian
 
jsat.classifiers.bayesian.graphicalmodel - package jsat.classifiers.bayesian.graphicalmodel
 
jsat.classifiers.boosting - package jsat.classifiers.boosting
 
jsat.classifiers.calibration - package jsat.classifiers.calibration
 
jsat.classifiers.evaluation - package jsat.classifiers.evaluation
 
jsat.classifiers.knn - package jsat.classifiers.knn
 
jsat.classifiers.linear - package jsat.classifiers.linear
 
jsat.classifiers.linear.kernelized - package jsat.classifiers.linear.kernelized
 
jsat.classifiers.neuralnetwork - package jsat.classifiers.neuralnetwork
 
jsat.classifiers.neuralnetwork.activations - package jsat.classifiers.neuralnetwork.activations
 
jsat.classifiers.neuralnetwork.initializers - package jsat.classifiers.neuralnetwork.initializers
 
jsat.classifiers.neuralnetwork.regularizers - package jsat.classifiers.neuralnetwork.regularizers
 
jsat.classifiers.svm - package jsat.classifiers.svm
 
jsat.classifiers.svm.extended - package jsat.classifiers.svm.extended
 
jsat.classifiers.trees - package jsat.classifiers.trees
 
jsat.clustering - package jsat.clustering
 
jsat.clustering.dissimilarity - package jsat.clustering.dissimilarity
 
jsat.clustering.evaluation - package jsat.clustering.evaluation
 
jsat.clustering.evaluation.intra - package jsat.clustering.evaluation.intra
 
jsat.clustering.hierarchical - package jsat.clustering.hierarchical
 
jsat.clustering.kmeans - package jsat.clustering.kmeans
 
jsat.datatransform - package jsat.datatransform
 
jsat.datatransform.featureselection - package jsat.datatransform.featureselection
 
jsat.datatransform.kernel - package jsat.datatransform.kernel
 
jsat.datatransform.visualization - package jsat.datatransform.visualization
 
jsat.distributions - package jsat.distributions
 
jsat.distributions.discrete - package jsat.distributions.discrete
 
jsat.distributions.empirical - package jsat.distributions.empirical
 
jsat.distributions.empirical.kernelfunc - package jsat.distributions.empirical.kernelfunc
 
jsat.distributions.kernels - package jsat.distributions.kernels
 
jsat.distributions.multivariate - package jsat.distributions.multivariate
 
jsat.driftdetectors - package jsat.driftdetectors
 
jsat.exceptions - package jsat.exceptions
 
jsat.io - package jsat.io
 
jsat.linear - package jsat.linear
 
jsat.linear.distancemetrics - package jsat.linear.distancemetrics
 
jsat.linear.solvers - package jsat.linear.solvers
 
jsat.linear.vectorcollection - package jsat.linear.vectorcollection
 
jsat.linear.vectorcollection.lsh - package jsat.linear.vectorcollection.lsh
 
jsat.lossfunctions - package jsat.lossfunctions
 
jsat.math - package jsat.math
 
jsat.math.decayrates - package jsat.math.decayrates
 
jsat.math.integration - package jsat.math.integration
 
jsat.math.optimization - package jsat.math.optimization
 
jsat.math.optimization.oned - package jsat.math.optimization.oned
 
jsat.math.optimization.stochastic - package jsat.math.optimization.stochastic
 
jsat.math.rootfinding - package jsat.math.rootfinding
 
jsat.parameters - package jsat.parameters
 
jsat.regression - package jsat.regression
 
jsat.regression.evaluation - package jsat.regression.evaluation
 
jsat.testing - package jsat.testing
 
jsat.testing.goodnessoffit - package jsat.testing.goodnessoffit
 
jsat.testing.onesample - package jsat.testing.onesample
 
jsat.text - package jsat.text
 
jsat.text.stemming - package jsat.text.stemming
 
jsat.text.tokenizer - package jsat.text.tokenizer
 
jsat.text.topicmodel - package jsat.text.topicmodel
 
jsat.text.wordweighting - package jsat.text.wordweighting
 
jsat.utils - package jsat.utils
 
jsat.utils.concurrent - package jsat.utils.concurrent
 
jsat.utils.random - package jsat.utils.random
 
JSATData - Class in jsat.io
JSAT Data Loader provides a simple binary file format for storing and reading datasets.
JSATData.DatasetTypeMarker - Enum in jsat.io
 
JSATData.FloatStorageMethod - Enum in jsat.io
 

K

k - Variable in class jsat.classifiers.linear.kernelized.DUOL
Kernel trick to use
k - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
k(int, int) - Method in class jsat.classifiers.svm.SupportVectorLearner
Internal kernel eval source.
k(double) - Method in class jsat.distributions.empirical.kernelfunc.BiweightKF
 
k(double) - Method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
 
k(double) - Method in class jsat.distributions.empirical.kernelfunc.GaussKF
 
k(double) - Method in interface jsat.distributions.empirical.kernelfunc.KernelFunction
Returns the weight to be applied to a sample for the normalized distance of two data points.
k(double) - Method in class jsat.distributions.empirical.kernelfunc.TriweightKF
 
k(double) - Method in class jsat.distributions.empirical.kernelfunc.UniformKF
 
k - Variable in class jsat.distributions.kernels.KernelPoint
 
K - Variable in class jsat.distributions.kernels.KernelPoint
 
k2() - Method in class jsat.distributions.empirical.kernelfunc.BiweightKF
 
k2() - Method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
 
k2() - Method in class jsat.distributions.empirical.kernelfunc.GaussKF
 
k2() - Method in interface jsat.distributions.empirical.kernelfunc.KernelFunction
Returns the variance of the kernel function
k2() - Method in class jsat.distributions.empirical.kernelfunc.TriweightKF
 
k2() - Method in class jsat.distributions.empirical.kernelfunc.UniformKF
 
K2NetworkLearner - Class in jsat.classifiers.bayesian.graphicalmodel
An implementation of the K2 algorithm for learning the structure of a Bayesian Network.
K2NetworkLearner() - Constructor for class jsat.classifiers.bayesian.graphicalmodel.K2NetworkLearner
 
Kappa - Class in jsat.classifiers.evaluation
Evaluates a classifier based on the Kappa statistic.
Kappa() - Constructor for class jsat.classifiers.evaluation.Kappa
 
Kappa(Kappa) - Constructor for class jsat.classifiers.evaluation.Kappa
 
kappa - Static variable in class jsat.text.GreekLetters
 
KClusterer - Interface in jsat.clustering
Defines a clustering method that requires the number of clusters in the data set to be known before hand.
KClustererBase - Class in jsat.clustering
A base foundation that provides an implementation of the methods that return a list of lists for the clusterings using their int array counterparts.
KClustererBase() - Constructor for class jsat.clustering.KClustererBase
 
KDTree<V extends Vec> - Class in jsat.linear.vectorcollection
Standard KDTree implementation.
KDTree(List<V>, DistanceMetric, KDTree.PivotSelection, ExecutorService) - Constructor for class jsat.linear.vectorcollection.KDTree
Creates a new KDTree with the given data and methods.
KDTree(List<V>, DistanceMetric, KDTree.PivotSelection) - Constructor for class jsat.linear.vectorcollection.KDTree
Creates a new KDTree with the given data and methods.
KDTree(List<V>, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.KDTree
Creates a new KDTree with the given data and methods.
KDTree() - Constructor for class jsat.linear.vectorcollection.KDTree
no-arg constructor for serialization
KDTree.KDTreeFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
KDTree.PivotSelection - Enum in jsat.linear.vectorcollection
KDTree uses an index of the vector at each stage to use as a pivot, dividing the remaining elements into two sets.
KDTreeFactory(KDTree.PivotSelection) - Constructor for class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
KDTreeFactory() - Constructor for class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
keepPredictions(boolean) - Method in class jsat.classifiers.ClassificationModelEvaluation
Indicates whether or not the predictions made during evaluation should be stored with the expected value for retrieval later.
kernel - Variable in class jsat.clustering.kmeans.KernelKMeans
The kernel trick to use
kernelAccel - Variable in class jsat.distributions.kernels.KernelPoint
 
KernelDensityEstimator - Class in jsat.distributions.empirical
Kernel Density Estimator, KDE, uses the data set itself to approximate the underlying probability distribution using Kernel Functions.
KernelDensityEstimator(Vec) - Constructor for class jsat.distributions.empirical.KernelDensityEstimator
 
KernelDensityEstimator(Vec, KernelFunction) - Constructor for class jsat.distributions.empirical.KernelDensityEstimator
 
KernelDensityEstimator(Vec, KernelFunction, double[]) - Constructor for class jsat.distributions.empirical.KernelDensityEstimator
 
KernelDensityEstimator(Vec, KernelFunction, double) - Constructor for class jsat.distributions.empirical.KernelDensityEstimator
 
KernelDensityEstimator(Vec, KernelFunction, double, double[]) - Constructor for class jsat.distributions.empirical.KernelDensityEstimator
 
KernelDistance - Class in jsat.linear.distancemetrics
Creates a distance metric from a given kernel trick.
KernelDistance(KernelTrick) - Constructor for class jsat.linear.distancemetrics.KernelDistance
Creates a distane metric from the given kernel.
KernelFunction - Interface in jsat.distributions.empirical.kernelfunc
Class for representing one dimensional kernel functions.
KernelFunctionParameter - Class in jsat.parameters
A default Parameter semi-implementation for classes that require a KernelFunction to be specified.
KernelFunctionParameter() - Constructor for class jsat.parameters.KernelFunctionParameter
 
KernelKMeans - Class in jsat.clustering.kmeans
Base class for various Kernel K Means implementations.
KernelKMeans(KernelTrick) - Constructor for class jsat.clustering.kmeans.KernelKMeans
 
KernelKMeans(KernelKMeans) - Constructor for class jsat.clustering.kmeans.KernelKMeans
Copy constructor
KernelPCA - Class in jsat.datatransform.kernel
A kernelized implementation of PCA.
KernelPCA() - Constructor for class jsat.datatransform.kernel.KernelPCA
Creates a new Kernel PCA transform object using the RBF Kernel and 100 dimensions
KernelPCA(int) - Constructor for class jsat.datatransform.kernel.KernelPCA
Creates a new Kernel PCA transform object using the RBF Kernel
KernelPCA(KernelTrick, int) - Constructor for class jsat.datatransform.kernel.KernelPCA
Creates a new Kernel PCA transform object
KernelPCA(KernelTrick, int, int, Nystrom.SamplingMethod) - Constructor for class jsat.datatransform.kernel.KernelPCA
Creates a new Kernel PCA transform object
KernelPCA(KernelTrick, DataSet, int, int, Nystrom.SamplingMethod) - Constructor for class jsat.datatransform.kernel.KernelPCA
Creates a new Kernel PCA transform object
KernelPCA(KernelPCA) - Constructor for class jsat.datatransform.kernel.KernelPCA
Copy constructor
KernelPoint - Class in jsat.distributions.kernels
The Kernel Point represents a kernelized weight vector by a linear combination of vectors transformed through a kernel fuctiion.
KernelPoint(KernelTrick, double) - Constructor for class jsat.distributions.kernels.KernelPoint
Creates a new Kernel Point, which is a point in the kernel space represented by an accumulation of vectors and uses the KernelPoint.BudgetStrategy.PROJECTION strategy with an unbounded maximum budget
KernelPoint(KernelPoint) - Constructor for class jsat.distributions.kernels.KernelPoint
Copy constructor
KernelPoint.BudgetStrategy - Enum in jsat.distributions.kernels
These enums control the method used to reduce the size of the support vector set in the kernel point.
KernelPoints - Class in jsat.distributions.kernels
This class represents a list of KernelPoint objects.
KernelPoints(KernelTrick, int, double) - Constructor for class jsat.distributions.kernels.KernelPoints
Creates a new set of kernel points that uses one unified gram matrix for each KernelPoint
KernelPoints(KernelTrick, int, double, boolean) - Constructor for class jsat.distributions.kernels.KernelPoints
Creates a new set of kernel points
KernelPoints(KernelPoints) - Constructor for class jsat.distributions.kernels.KernelPoints
Copy constructor
KernelRidgeRegression - Class in jsat.regression
A kernelized implementation of Ridge Regression.
KernelRidgeRegression() - Constructor for class jsat.regression.KernelRidgeRegression
Creates a new Kernel Ridge Regression learner that uses an RBF kernel
KernelRidgeRegression(double, KernelTrick) - Constructor for class jsat.regression.KernelRidgeRegression
Creates a new Kernel Ridge Regression learner
KernelRidgeRegression(KernelRidgeRegression) - Constructor for class jsat.regression.KernelRidgeRegression
Copy Constructor
KernelRLS - Class in jsat.regression
Provides an implementation of the Kernel Recursive Least Squares algorithm.
KernelRLS(KernelTrick, double) - Constructor for class jsat.regression.KernelRLS
Creates a new Kernel RLS learner
KernelRLS(KernelRLS) - Constructor for class jsat.regression.KernelRLS
Copy constructor
KernelSGD - Class in jsat.classifiers.linear.kernelized
Kernel SGD is the kernelized counterpart to LinearSGD, and learns nonlinear functions via the kernel trick.
KernelSGD() - Constructor for class jsat.classifiers.linear.kernelized.KernelSGD
Creates a new Kernel SGD object for classification with the RBF kernel
KernelSGD(LossFunc, KernelTrick, double, KernelPoint.BudgetStrategy, int) - Constructor for class jsat.classifiers.linear.kernelized.KernelSGD
Creates a new Kernel SGD object
KernelSGD(LossFunc, KernelTrick, double, KernelPoint.BudgetStrategy, int, double, double) - Constructor for class jsat.classifiers.linear.kernelized.KernelSGD
Creates a new Kernel SGD object
KernelSGD(KernelSGD) - Constructor for class jsat.classifiers.linear.kernelized.KernelSGD
Copy constructor
KernelTrick - Interface in jsat.distributions.kernels
The KernelTrick is a method can can be used to alter an algorithm to do its calculations in a projected feature space, without explicitly forming the features.
kEval(Vec, Vec) - Method in class jsat.classifiers.svm.SupportVectorLearner
Performs a kernel evaluation of the product between two vectors directly.
kEval(int, int) - Method in class jsat.classifiers.svm.SupportVectorLearner
Performs a kernel evaluation of the a'th and b'th vectors in the SupportVectorLearner.vecs array.
kEvalSum(Vec) - Method in class jsat.classifiers.svm.SupportVectorLearner
Performs a summation of the form
αi k(xi, y)
for each support vector and associated alpha value currently stored in the support vector machine.
KExpanded - Variable in class jsat.distributions.kernels.KernelPoint
 
KMeans - Class in jsat.clustering.kmeans
Base class for the numerous implementations of k-means that exist.
KMeans(DistanceMetric, SeedSelectionMethods.SeedSelection, Random) - Constructor for class jsat.clustering.kmeans.KMeans
 
KMeans(KMeans) - Constructor for class jsat.clustering.kmeans.KMeans
Copy constructor
KMeansPDN - Class in jsat.clustering.kmeans
This class provides a method of performing KMeans clustering when the value of K is not known.
KMeansPDN() - Constructor for class jsat.clustering.kmeans.KMeansPDN
Creates a new clusterer.
KMeansPDN(KMeans) - Constructor for class jsat.clustering.kmeans.KMeansPDN
Creates a new clustered that uses the specified object to perform clustering for all k.
KMeansPDN(KMeansPDN) - Constructor for class jsat.clustering.kmeans.KMeansPDN
Copy constructor
Kolmogorov - Class in jsat.distributions
 
Kolmogorov() - Constructor for class jsat.distributions.Kolmogorov
 
kPrime(double) - Method in class jsat.distributions.empirical.kernelfunc.BiweightKF
 
kPrime(double) - Method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
 
kPrime(double) - Method in class jsat.distributions.empirical.kernelfunc.GaussKF
 
kPrime(double) - Method in interface jsat.distributions.empirical.kernelfunc.KernelFunction
Returns the value of the derivative at a point, k'(u)
kPrime(double) - Method in class jsat.distributions.empirical.kernelfunc.TriweightKF
 
kPrime(double) - Method in class jsat.distributions.empirical.kernelfunc.UniformKF
 
KSTest - Class in jsat.testing.goodnessoffit
 
KSTest(Vec) - Constructor for class jsat.testing.goodnessoffit.KSTest
Creates a new statistical test for testing.
kTmp - Variable in class jsat.classifiers.linear.kernelized.DUOL
Stores the values of k(x_i, y) for reuse when observing a new example
kurtosis() - Method in class jsat.linear.DenseVector
 
kurtosis() - Method in class jsat.linear.ScaledVector
 
kurtosis() - Method in class jsat.linear.ShiftedVec
 
kurtosis() - Method in class jsat.linear.SparseVector
 
kurtosis() - Method in class jsat.linear.Vec
Computes the kurtosis of this vector, which is the 4th moment.
kurtosis() - Method in class jsat.linear.VecPaired
 

L

L2CacheSize - Static variable in class jsat.utils.SystemInfo
Contains the per core L2 Cache size.
label - Variable in class jsat.classifiers.svm.PlattSMO
Stores the true value of the data point
label - Variable in class jsat.classifiers.svm.SVMnoBias
Stores the true label value (-1 or +1) of the data point
labelInfo - Variable in class jsat.text.ClassificationHashedTextDataLoader
The information about the class label that would be predicted for a classification data set.
labelInfo - Variable in class jsat.text.ClassificationTextDataLoader
The information about the class label that would be predicted for a classification data set.
lambda - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The regularization penalty
lambda - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
lamda - Static variable in class jsat.text.GreekLetters
 
LanceWilliamsDissimilarity - Class in jsat.clustering.dissimilarity
This class provides a base implementation of a Lance Williams (LW) Dissimilarity measure, which is updatable.
LanceWilliamsDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
Creates a new LW dissimilarity measure using the given metric as the base distance between individual points.
LanceWilliamsDissimilarity(LanceWilliamsDissimilarity) - Constructor for class jsat.clustering.dissimilarity.LanceWilliamsDissimilarity
Copy constructor
Laplace - Class in jsat.distributions
 
Laplace(double, double) - Constructor for class jsat.distributions.Laplace
 
LargeViz - Class in jsat.datatransform.visualization
LargeViz is an algorithm for creating low dimensional embeddings for visualization.
LargeViz() - Constructor for class jsat.datatransform.visualization.LargeViz
 
last() - Method in class jsat.utils.BoundedSortedList
 
last() - Method in class jsat.utils.IntSortedSet
 
last() - Method in class jsat.utils.SortedArrayList
 
lazySet(int, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Eventually sets the element at position i to the given value.
LBFGS - Class in jsat.math.optimization
Implementation of the Limited memory variant of BFGS.
LBFGS() - Constructor for class jsat.math.optimization.LBFGS
Creates a new L-BFGS optimization object that uses a maximum of 500 iterations and a Backtracking line search.
LBFGS(int) - Constructor for class jsat.math.optimization.LBFGS
Creates a new L-BFGS optimization object that uses a maximum of 500 iterations and a Backtracking line search.
LBFGS(int, int, LineSearch) - Constructor for class jsat.math.optimization.LBFGS
Creates a new L-BFGS optimization object
leanTransforms(DataSet) - Method in class jsat.datatransform.DataTransformProcess
Learns the transforms for the given data set.
learnApplyTransforms(DataSet) - Method in class jsat.datatransform.DataTransformProcess
Learns the transforms for the given data set.
learnNetwork(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.graphicalmodel.K2NetworkLearner
Learns the network structure from the given data set.
length() - Method in class jsat.linear.ConcatenatedVec
 
length() - Method in class jsat.linear.ConstantVector
 
length() - Method in class jsat.linear.DenseVector
 
length() - Method in class jsat.linear.Poly2Vec
 
length() - Method in class jsat.linear.RandomVector
 
length() - Method in class jsat.linear.ScaledVector
 
length() - Method in class jsat.linear.ShiftedVec
 
length() - Method in class jsat.linear.SparseVector
 
length() - Method in class jsat.linear.SubVector
 
length() - Method in class jsat.linear.Vec
Returns the length of this vector
length() - Method in class jsat.linear.VecPaired
 
length() - Method in class jsat.linear.VecWithNorm
 
length() - Method in class jsat.utils.concurrent.AtomicDoubleArray
Returns the length of the array.
length() - Method in class jsat.utils.IndexTable
The length of the previous array that was sorted
lentz(double...) - Method in class jsat.math.ContinuedFraction
Uses Thompson and Barnett's modified Lentz's algorithm create an approximation that should be accurate to full precision.
Levy - Class in jsat.distributions
Implementation of the Levy ContinuousDistribution
Levy(double, double) - Constructor for class jsat.distributions.Levy
 
LIBSVMLoader - Class in jsat.io
Loads a LIBSVM data file into a DataSet.
LinearBatch - Class in jsat.classifiers.linear
LinearBatch learns either a classification or regression problem depending on the loss function ℓ(w,x) used.
LinearBatch() - Constructor for class jsat.classifiers.linear.LinearBatch
Creates a new Linear Batch learner for classification using a small regularization term
LinearBatch(LossFunc, double) - Constructor for class jsat.classifiers.linear.LinearBatch
Creates a new Linear Batch learner
LinearBatch(LossFunc, double, double) - Constructor for class jsat.classifiers.linear.LinearBatch
Creates a new Linear Batch learner
LinearBatch(LossFunc, double, double, Optimizer2) - Constructor for class jsat.classifiers.linear.LinearBatch
Creates a new Linear Batch learner
LinearBatch(LinearBatch) - Constructor for class jsat.classifiers.linear.LinearBatch
Copy constructor
LinearBatch.GradFunction - Class in jsat.classifiers.linear
Function for using the single weight vector loss functions related to LossC and LossR
LinearBatch.LossFunction - Class in jsat.classifiers.linear
Function for using the single weight vector loss functions related to LossC and LossR.
LinearBatch.LossMCFunction - Class in jsat.classifiers.linear
 
LinearDecay - Class in jsat.math.decayrates
The Linear Decay requires the maximum time step to be explicitly known ahead of time.
LinearDecay() - Constructor for class jsat.math.decayrates.LinearDecay
Creates a new linear decay that goes down to 1e-4 after 100,000 units of time
LinearDecay(double, double) - Constructor for class jsat.math.decayrates.LinearDecay
Creates a new Linear Decay

Note that when using LinearDecay.rate(double, double, double), the maxTime is always superceded by the value given to the function.
LinearKernel - Class in jsat.distributions.kernels
Provides a linear kernel function, which computes the normal dot product.
LinearKernel(double) - Constructor for class jsat.distributions.kernels.LinearKernel
Creates a new Linear Kernel that computes the dot product and offsets it by a specified value
LinearKernel() - Constructor for class jsat.distributions.kernels.LinearKernel
Creates a new Linear Kernel with an added bias term of 1
LinearL1SCD - Class in jsat.classifiers.linear
Implements an iterative and single threaded form of fast Stochastic Coordinate Decent for optimizing L1 regularized linear regression problems.
LinearL1SCD() - Constructor for class jsat.classifiers.linear.LinearL1SCD
Creates a new SCD L1 learner using default settings.
LinearL1SCD(int, double, StochasticSTLinearL1.Loss) - Constructor for class jsat.classifiers.linear.LinearL1SCD
Creates a new SCD L1 learner.
LinearL1SCD(int, double, StochasticSTLinearL1.Loss, boolean) - Constructor for class jsat.classifiers.linear.LinearL1SCD
Creates a new SCD L1 learner.
LinearLayer - Class in jsat.classifiers.neuralnetwork.activations
 
LinearLayer() - Constructor for class jsat.classifiers.neuralnetwork.activations.LinearLayer
 
LinearSGD - Class in jsat.classifiers.linear
LinearSGD learns either a classification or regression problem depending on the loss function ℓ(w,x) used.
LinearSGD() - Constructor for class jsat.classifiers.linear.LinearSGD
Creates a new LinearSGD learner for multi-class classification problems.
LinearSGD(LossFunc, double, double) - Constructor for class jsat.classifiers.linear.LinearSGD
Creates a new LinearSGD learner
LinearSGD(LossFunc, double, DecayRate, double, double) - Constructor for class jsat.classifiers.linear.LinearSGD
Creates a new LinearSGD learner.
LinearSGD(LinearSGD) - Constructor for class jsat.classifiers.linear.LinearSGD
Copy constructor
LinearTools - Class in jsat.classifiers.linear
This class provides static helper methods that may be useful for various linear models.
LinearTransform - Class in jsat.datatransform
This class transforms all numerical values into a specified range by a linear scaling of all the data point values.
LinearTransform() - Constructor for class jsat.datatransform.LinearTransform
Creates a new Linear Transformation that will scale values to the [0, 1] range.
LinearTransform(DataSet) - Constructor for class jsat.datatransform.LinearTransform
Creates a new Linear Transformation for the input data set so that all values are in the [0, 1] range.
LinearTransform(double, double) - Constructor for class jsat.datatransform.LinearTransform
Creates a new Linear Transformation.
LinearTransform(DataSet, double, double) - Constructor for class jsat.datatransform.LinearTransform
Creates a new Linear Transformation for the input data set.
lineSearch(double, Vec, Vec, Vec, Function, FunctionVec, double, double, Vec, double[], Vec) - Method in class jsat.math.optimization.BacktrackingArmijoLineSearch
 
lineSearch(double, Vec, Vec, Vec, Function, FunctionVec, double, double, Vec, double[], Vec, ExecutorService) - Method in class jsat.math.optimization.BacktrackingArmijoLineSearch
 
LineSearch - Interface in jsat.math.optimization
Line search defines a method of minimizing a function φ(α) = f(xp) where α > 0 is a scalar value, and x and p are fixed vectors.
lineSearch(double, Vec, Vec, Vec, Function, FunctionVec, double, double, Vec, double[], Vec) - Method in interface jsat.math.optimization.LineSearch
Attempts to find the value of α that minimizes f(xp)
lineSearch(double, Vec, Vec, Vec, Function, FunctionVec, double, double, Vec, double[], Vec, ExecutorService) - Method in interface jsat.math.optimization.LineSearch
Attempts to find the value of α that minimizes f(xp)
lineSearch(double, Vec, Vec, Vec, Function, FunctionVec, double, double, Vec, double[], Vec) - Method in class jsat.math.optimization.WolfeNWLineSearch
 
lineSearch(double, Vec, Vec, Vec, Function, FunctionVec, double, double, Vec, double[], Vec, ExecutorService) - Method in class jsat.math.optimization.WolfeNWLineSearch
 
ListUtils - Class in jsat.utils
 
LloydKernelKMeans - Class in jsat.clustering.kmeans
An implementation of the naive algorithm for performing kernel k-means.
LloydKernelKMeans(KernelTrick) - Constructor for class jsat.clustering.kmeans.LloydKernelKMeans
Creates a new Kernel K Means object
LloydKernelKMeans(LloydKernelKMeans) - Constructor for class jsat.clustering.kmeans.LloydKernelKMeans
Copy constructor
lnBeta(double, double) - Static method in class jsat.math.SpecialMath
 
lnGamma(double) - Static method in class jsat.math.SpecialMath
Computes the natural logarithm of SpecialMath.gamma(double).
load(InputStream) - Static method in class jsat.io.JSATData
This loads a JSAT dataset from an input stream, and will not do any of its own buffering.
load(InputStream, boolean) - Static method in class jsat.io.JSATData
This loads a JSAT dataset from an input stream, and will not do any of its own buffering.
loadArffFile(File) - Static method in class jsat.ARFFLoader
Uses the given file path to load a data set from an ARFF file.
loadArffFile(Reader) - Static method in class jsat.ARFFLoader
Uses the given reader to load a data set assuming it follows the ARFF file format
loadC(File) - Static method in class jsat.io.LIBSVMLoader
Loads a new classification data set from a LIBSVM file, assuming the label is a nominal target value
loadC(File, double) - Static method in class jsat.io.LIBSVMLoader
Loads a new classification data set from a LIBSVM file, assuming the label is a nominal target value
loadC(File, double, int) - Static method in class jsat.io.LIBSVMLoader
Loads a new classification data set from a LIBSVM file, assuming the label is a nominal target value
loadC(InputStreamReader, double) - Static method in class jsat.io.LIBSVMLoader
Loads a new classification data set from a LIBSVM file, assuming the label is a nominal target value
loadC(Reader, double, int) - Static method in class jsat.io.LIBSVMLoader
Loads a new classification data set from a LIBSVM file, assuming the label is a nominal target value
loadClassification(InputStream) - Static method in class jsat.io.JSATData
Loads in a JSAT dataset as a ClassificationDataSet.
loadR(File) - Static method in class jsat.io.LIBSVMLoader
Loads a new regression data set from a LIBSVM file, assuming the label is a numeric target value to predict
loadR(File, double) - Static method in class jsat.io.LIBSVMLoader
Loads a new regression data set from a LIBSVM file, assuming the label is a numeric target value to predict
loadR(File, double, int) - Static method in class jsat.io.LIBSVMLoader
Loads a new regression data set from a LIBSVM file, assuming the label is a numeric target value to predict
loadR(InputStreamReader, double) - Static method in class jsat.io.LIBSVMLoader
Loads a new regression data set from a LIBSVM file, assuming the label is a numeric target value to predict
loadR(Reader, double, int) - Static method in class jsat.io.LIBSVMLoader
Loads a new regression data set from a LIBSVM file, assuming the label is a numeric target value to predict.
loadRegression(InputStream) - Static method in class jsat.io.JSATData
Loads in a JSAT dataset as a RegressionDataSet.
loadSimple(InputStream) - Static method in class jsat.io.JSATData
Loads in a JSAT dataset as a SimpleDataSet.
localClassify(DataPoint) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
localClassify(DataPoint) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns the classification result that would have been obtained if the current node was a leaf node.
localRegress(DataPoint) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
localRegress(DataPoint) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Returns the regression result that would have been obtained if the current node was a leaf node.
log(double) - Static method in class jsat.math.FastMath
Computes the natural logarithm of the input
log2(double) - Static method in class jsat.math.FastMath
Computes log2(x)
log2_2pd1(double) - Static method in class jsat.math.FastMath
Computes log2(x) using a Pade approximation.
log2_c11(double) - Static method in class jsat.math.FastMath
Computes log2(x) using a cache of 211 values, consuming approximately 17 kilobytes of memory.
The results are generally accurate to an absolute and relative error of 10-4
logFunc - Static variable in class jsat.math.MathTricks
Convenience object for taking the log of the first index
LogicalCores - Static variable in class jsat.utils.SystemInfo
 
Logistic - Class in jsat.distributions
 
Logistic(double, double) - Constructor for class jsat.distributions.Logistic
 
LogisticLoss - Class in jsat.lossfunctions
The LogisticLoss loss function for classification L(x, y) = log(1+exp(-y*x)).
LogisticLoss() - Constructor for class jsat.lossfunctions.LogisticLoss
 
LogisticRegression - Class in jsat.regression
Logistic regression is a common method used to fit a probability between binary outputs.
LogisticRegression() - Constructor for class jsat.regression.LogisticRegression
 
LogisticRegressionDCD - Class in jsat.classifiers.linear
This provides an implementation of regularized logistic regression using Dual Coordinate Descent.
LogisticRegressionDCD() - Constructor for class jsat.classifiers.linear.LogisticRegressionDCD
Creates a new Logistic Regression learner that does no more than 100 training iterations with a default regularization tradeoff of C = 1
LogisticRegressionDCD(double) - Constructor for class jsat.classifiers.linear.LogisticRegressionDCD
Creates a new Logistic Regression learner that does no more than 100 training iterations.
LogisticRegressionDCD(double, int) - Constructor for class jsat.classifiers.linear.LogisticRegressionDCD
Creates a new Logistic Regression learner
LogisticRegressionDCD(LogisticRegressionDCD) - Constructor for class jsat.classifiers.linear.LogisticRegressionDCD
Copy constructor
logitActiv - Static variable in class jsat.classifiers.neuralnetwork.BackPropagationNet
The logit activation function.
LogitBoost - Class in jsat.classifiers.boosting
An implementation of the original 2 class LogitBoost algorithm.
LogitBoost(int) - Constructor for class jsat.classifiers.boosting.LogitBoost
Creates a new LogitBoost using the standard MultipleLinearRegression .
LogitBoost(Regressor, int) - Constructor for class jsat.classifiers.boosting.LogitBoost
Creates a new LogitBoost using the given base learner.
LogitBoostPL - Class in jsat.classifiers.boosting
An extension to the original LogitBoost algorithm for parallel training.
LogitBoostPL(Regressor, int) - Constructor for class jsat.classifiers.boosting.LogitBoostPL
 
LogitBoostPL(int) - Constructor for class jsat.classifiers.boosting.LogitBoostPL
 
LogLoss - Class in jsat.classifiers.evaluation
This computes the multi-class Log Loss
- 1/N Σ∀ i ∈ N log(pi, y)

Where N is the number of data points and pi, y is the estimated probability of the true class label.
LogLoss() - Constructor for class jsat.classifiers.evaluation.LogLoss
Creates a new Log Loss evaluation score
LogLoss(double) - Constructor for class jsat.classifiers.evaluation.LogLoss
Creates a new Log Loss evaluation score
LogLoss(LogLoss) - Constructor for class jsat.classifiers.evaluation.LogLoss
 
LogNormal - Class in jsat.distributions
 
LogNormal() - Constructor for class jsat.distributions.LogNormal
 
LogNormal(double, double) - Constructor for class jsat.distributions.LogNormal
 
logPdf(double...) - Method in class jsat.clustering.EMGaussianMixture
 
logPdf(Vec) - Method in class jsat.clustering.EMGaussianMixture
 
logPdf(double) - Method in class jsat.distributions.ContinuousDistribution
Computes the log of the Probability Density Function.
logPdf(double) - Method in class jsat.distributions.Exponential
 
logPdf(double) - Method in class jsat.distributions.FisherSendor
 
logPdf(double) - Method in class jsat.distributions.Gamma
 
logPdf(double) - Method in class jsat.distributions.Levy
 
logPdf(double) - Method in class jsat.distributions.MaxwellBoltzmann
 
logPdf(Vec) - Method in class jsat.distributions.multivariate.Dirichlet
 
logPdf(double...) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Computes the log of the probability density function.
logPdf(Vec) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Computes the log of the probability density function.
logPdf(double...) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
logPdf(Vec) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
logPdf(Vec) - Method in class jsat.distributions.multivariate.NormalM
 
logPdf(Vec) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
 
logPdf(double, double, double) - Static method in class jsat.distributions.Normal
Computes the log probability of a given value
logPdf(double) - Method in class jsat.distributions.Normal
 
logPdf(double) - Method in class jsat.distributions.Pareto
 
logPdf(double) - Method in class jsat.distributions.Weibull
 
logPmf(int) - Method in class jsat.distributions.discrete.Binomial
 
logPmf(int) - Method in class jsat.distributions.discrete.DiscreteDistribution
Computes the log of the Probability Mass Function.
logPmf(int) - Method in class jsat.distributions.discrete.Poisson
 
logProb(double, double) - Method in enum jsat.classifiers.linear.StochasticMultinomialLogisticRegression.Prior
 
logProb(double, double, double) - Method in enum jsat.classifiers.linear.StochasticMultinomialLogisticRegression.Prior
 
logSumExp(Vec, double) - Static method in class jsat.math.MathTricks
Provides a numerically table way to perform the log of a sum of exponentiations.
logSumExp(double[], double) - Static method in class jsat.math.MathTricks
Provides a numerically table way to perform the log of a sum of exponentiations.
LogUniform - Class in jsat.distributions
The Log Uniform distribution is such that if X is the distribution, then Y = log(X) is uniformly distributed.
LogUniform() - Constructor for class jsat.distributions.LogUniform
Creates a new Log Uniform distribution between 1e-2 and 1
LogUniform(double, double) - Constructor for class jsat.distributions.LogUniform
Creates a new Log Uniform distribution
LongDoubleMap - Class in jsat.utils
A hash map for storing the primitive types of long (as keys) to doubles (as table).
LongDoubleMap() - Constructor for class jsat.utils.LongDoubleMap
 
LongDoubleMap(int) - Constructor for class jsat.utils.LongDoubleMap
 
LongDoubleMap(int, float) - Constructor for class jsat.utils.LongDoubleMap
 
LongList - Class in jsat.utils
Provides a modifiable implementation of a List using an array of longs.
LongList() - Constructor for class jsat.utils.LongList
Creates a new LongList
LongList(int) - Constructor for class jsat.utils.LongList
Creates a new LongList with the given initial capacity
LongList(Collection<Long>) - Constructor for class jsat.utils.LongList
 
loss - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The loss function to use
loss(double, double) - Method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
Returns the loss on the prediction
loss(double, double) - Static method in class jsat.lossfunctions.AbsoluteLoss
Computes the absolute loss
loss(double, double, double) - Static method in class jsat.lossfunctions.EpsilonInsensitiveLoss
Computes the ε-insensitive loss
loss(double, double) - Static method in class jsat.lossfunctions.HingeLoss
Computes the HingeLoss loss
loss(double, double, double) - Static method in class jsat.lossfunctions.HuberLoss
Computes the HuberLoss loss
loss(double, double) - Static method in class jsat.lossfunctions.LogisticLoss
Computes the logistic loss
loss(double, double) - Static method in class jsat.lossfunctions.SquaredLoss
Computes the SquaredLoss loss
LossC - Interface in jsat.lossfunctions
Specifies a loss function for binary classification problems.
LossFunc - Interface in jsat.lossfunctions
Provides a generic interface for some loss function on some problem that can be described with a single real prediction value and a single real expected value.
LossFunction(DataSet, LossFunc) - Constructor for class jsat.classifiers.linear.LinearBatch.LossFunction
 
LossMC - Interface in jsat.lossfunctions
Specifies a loss function for multi-class problems.
LossMCFunction(ClassificationDataSet, LossMC) - Constructor for class jsat.classifiers.linear.LinearBatch.LossMCFunction
 
LossR - Interface in jsat.lossfunctions
Specifies a getLoss function for regression problems.
LovinsStemmer - Class in jsat.text.stemming
Implements Lovins' stemming algorithm described here http://snowball.tartarus.org/algorithms/lovins/stemmer.html
LovinsStemmer() - Constructor for class jsat.text.stemming.LovinsStemmer
 
lowerIsBetter() - Method in class jsat.classifiers.evaluation.Accuracy
 
lowerIsBetter() - Method in class jsat.classifiers.evaluation.AUC
 
lowerIsBetter() - Method in interface jsat.classifiers.evaluation.ClassificationScore
Returns true if a lower score is better, or false if a higher score is better
lowerIsBetter() - Method in class jsat.classifiers.evaluation.Kappa
 
lowerIsBetter() - Method in class jsat.classifiers.evaluation.LogLoss
 
lowerIsBetter() - Method in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
lowerIsBetter() - Method in class jsat.regression.evaluation.CoefficientOfDetermination
 
lowerIsBetter() - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
lowerIsBetter() - Method in class jsat.regression.evaluation.MeanSquaredError
 
lowerIsBetter() - Method in interface jsat.regression.evaluation.RegressionScore
Returns true if a lower score is better, or false if a higher score is better
lowerIsBetter() - Method in class jsat.regression.evaluation.RelativeAbsoluteError
 
lowerIsBetter() - Method in class jsat.regression.evaluation.RelativeSquaredError
 
LRS - Class in jsat.datatransform.featureselection
plus-L minus-R Selection (LRS) is a greedy method of selecting a subset of features to use for prediction.
LRS(int, int, Classifier, int) - Constructor for class jsat.datatransform.featureselection.LRS
Creates a LRS feature selection object for a classification problem
LRS(int, int, ClassificationDataSet, Classifier, int) - Constructor for class jsat.datatransform.featureselection.LRS
Performs LRS feature selection for a classification problem
LRS(int, int, Regressor, int) - Constructor for class jsat.datatransform.featureselection.LRS
Creates a LRS feature selection object for a regression problem
LRS(int, int, RegressionDataSet, Regressor, int) - Constructor for class jsat.datatransform.featureselection.LRS
Performs LRS feature selection for a regression problem
LSDBC - Class in jsat.clustering
A parallel implementation of Locally Scaled Density Based Clustering.
LSDBC(DistanceMetric, double, int) - Constructor for class jsat.clustering.LSDBC
Creates a new LSDBC clustering object using the given distance metric
LSDBC(DistanceMetric, double) - Constructor for class jsat.clustering.LSDBC
Creates a new LSDBC clustering object using the given distance metric
LSDBC(DistanceMetric) - Constructor for class jsat.clustering.LSDBC
Creates a new LSDBC clustering object using the given distance metric
LSDBC() - Constructor for class jsat.clustering.LSDBC
Creates a new LSDBC clustering object using the EuclideanDistance and default parameter values.
LSDBC(LSDBC) - Constructor for class jsat.clustering.LSDBC
Copy constructor
LSSVM - Class in jsat.classifiers.svm
The Least Squares Support Vector Machine (LS-SVM) is an alternative to the standard SVM classifier for regression and binary classification problems.
LSSVM() - Constructor for class jsat.classifiers.svm.LSSVM
Creates a new LS-SVM learner that uses a linear model and does not use a cache
LSSVM(KernelTrick) - Constructor for class jsat.classifiers.svm.LSSVM
Creates a new LS-SVM learner that does not use a cache
LSSVM(KernelTrick, SupportVectorLearner.CacheMode) - Constructor for class jsat.classifiers.svm.LSSVM
Creates a new LS-SVM learner
LSSVM(LSSVM) - Constructor for class jsat.classifiers.svm.LSSVM
Creates a deep copy of another LS-SVM
lup() - Method in class jsat.linear.DenseMatrix
 
lup(ExecutorService) - Method in class jsat.linear.DenseMatrix
 
lup() - Method in class jsat.linear.GenericMatrix
 
lup(ExecutorService) - Method in class jsat.linear.GenericMatrix
 
lup() - Method in class jsat.linear.Matrix
 
lup(ExecutorService) - Method in class jsat.linear.Matrix
 
lup() - Method in class jsat.linear.SparseMatrix
 
lup(ExecutorService) - Method in class jsat.linear.SparseMatrix
 
LUPDecomposition - Class in jsat.linear
This class uses the LUP decomposition of a matrix to provide efficient methods for solving A x = b, as well as computing the determinant of A.
LUPDecomposition(Matrix, Matrix, Matrix) - Constructor for class jsat.linear.LUPDecomposition
 
LUPDecomposition(Matrix) - Constructor for class jsat.linear.LUPDecomposition
 
LUPDecomposition(Matrix, ExecutorService) - Constructor for class jsat.linear.LUPDecomposition
 
LVQ - Class in jsat.classifiers.neuralnetwork
Learning Vector Quantization (LVQ) is an algorithm that extends SOM to take advantage of label information to perform classification.
LVQ(DistanceMetric, int) - Constructor for class jsat.classifiers.neuralnetwork.LVQ
Creates a new LVQ instance
LVQ(DistanceMetric, int, double, int) - Constructor for class jsat.classifiers.neuralnetwork.LVQ
Creates a new LVQ instance
LVQ(DistanceMetric, int, double, int, LVQ.LVQVersion, DecayRate) - Constructor for class jsat.classifiers.neuralnetwork.LVQ
Creates a new LVQ instance
LVQ(LVQ) - Constructor for class jsat.classifiers.neuralnetwork.LVQ
Copy Constructor
LVQ.LVQVersion - Enum in jsat.classifiers.neuralnetwork
There are several LVQ versions, each one adding an additional case in which two LVs instead of one can be updated.
LVQLLC - Class in jsat.classifiers.neuralnetwork
LVQ with Locally Learned Classifier (LVQ-LLC) is an adaption of the LVQ algorithm I have come up with.
LVQLLC(DistanceMetric, int) - Constructor for class jsat.classifiers.neuralnetwork.LVQLLC
Creates a new LVQ-LLC instance that uses MultivariateNormals as the local classifier.
LVQLLC(DistanceMetric, int, Classifier) - Constructor for class jsat.classifiers.neuralnetwork.LVQLLC
Creates a new LVQ-LLC instance
LVQLLC(DistanceMetric, int, Classifier, double, int) - Constructor for class jsat.classifiers.neuralnetwork.LVQLLC
Creates a new LVQ-LLC instance
LVQLLC(DistanceMetric, int, Classifier, double, int, LVQ.LVQVersion, DecayRate) - Constructor for class jsat.classifiers.neuralnetwork.LVQLLC
Creates a new LVQ-LLC instance
LVQLLC(LVQLLC) - Constructor for class jsat.classifiers.neuralnetwork.LVQLLC
 
LWL - Class in jsat.classifiers.knn
Locally Weighted Learner (LW) is the combined generalized implementation of Locally Weighted Regression (LWR) and Locally Weighted Naive Bayes (LWNB).
LWL(Classifier, int, DistanceMetric) - Constructor for class jsat.classifiers.knn.LWL
Creates a new LWL classifier
LWL(Classifier, int, DistanceMetric, KernelFunction) - Constructor for class jsat.classifiers.knn.LWL
Creates a new LWL classifier
LWL(Classifier, int, DistanceMetric, KernelFunction, VectorCollectionFactory<VecPaired<Vec, Double>>) - Constructor for class jsat.classifiers.knn.LWL
Creates a new LWL classifier
LWL(Regressor, int, DistanceMetric) - Constructor for class jsat.classifiers.knn.LWL
Creates a new LWL Regressor
LWL(Regressor, int, DistanceMetric, KernelFunction) - Constructor for class jsat.classifiers.knn.LWL
Creates a new LWL Regressor
LWL(Regressor, int, DistanceMetric, KernelFunction, VectorCollectionFactory<VecPaired<Vec, Double>>) - Constructor for class jsat.classifiers.knn.LWL
Creates a new LWL Regressor

M

MAGIC_NUMBER - Static variable in class jsat.io.JSATData
 
MahalanobisDistance - Class in jsat.linear.distancemetrics
The Mahalanobis Distance is a metric that takes into account the variance of the data.
MahalanobisDistance() - Constructor for class jsat.linear.distancemetrics.MahalanobisDistance
 
MajorityVote - Class in jsat.classifiers
The Majority Vote classifier is a simple ensemble classifier.
MajorityVote(Classifier...) - Constructor for class jsat.classifiers.MajorityVote
Creates a new Majority Vote classifier using the given voters.
MajorityVote(List<Classifier>) - Constructor for class jsat.classifiers.MajorityVote
Creates a new Majority Vote classifier using the given voters.
makeNodeC(List<DataPointPair<Integer>>, Set<Integer>, int, ExecutorService, ModifiableCountDownLatch) - Method in class jsat.classifiers.trees.DecisionTree
Makes a new node for classification
makeNodeC(List<DataPointPair<Integer>>, Set<Integer>, int, ExecutorService, ModifiableCountDownLatch) - Method in class jsat.classifiers.trees.RandomDecisionTree
 
makeNodeR(List<DataPointPair<Double>>, Set<Integer>, int, ExecutorService, ModifiableCountDownLatch) - Method in class jsat.classifiers.trees.DecisionTree
Makes a new node for regression
makeNodeR(List<DataPointPair<Double>>, Set<Integer>, int, ExecutorService, ModifiableCountDownLatch) - Method in class jsat.classifiers.trees.RandomDecisionTree
 
ManhattanDistance - Class in jsat.linear.distancemetrics
Manhattan Distance is the L1 norm.
ManhattanDistance() - Constructor for class jsat.linear.distancemetrics.ManhattanDistance
 
MathTricks - Class in jsat.math
This class provides utilities for performing specific arithmetic patterns in numerically stable / efficient ways.
Matrix - Class in jsat.linear
Generic class with some pre-implemented methods for a Matrix object.
Matrix() - Constructor for class jsat.linear.Matrix
 
MatrixOfVecs - Class in jsat.linear
This class provides a base mechanism to create a Matrix 'view' from a list of Vec objects.
MatrixOfVecs(Vec...) - Constructor for class jsat.linear.MatrixOfVecs
Creates a new Matrix of Vecs from the given array of Vec objects.
MatrixOfVecs(List<Vec>) - Constructor for class jsat.linear.MatrixOfVecs
Creates a new Matrix of Vecs from the given list of Vec objects.
MatrixOfVecs(int, int, boolean) - Constructor for class jsat.linear.MatrixOfVecs
Creates a new Matrix of Vecs of the desired size.
MatrixStatistics - Class in jsat.linear
This class provides methods useful for statistical operations that involve matrices and vectors.
MatthewsCorrelationCoefficient - Class in jsat.classifiers.evaluation
Evaluates a classifier based on Mathews Correlation Coefficient
MatthewsCorrelationCoefficient() - Constructor for class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
MatthewsCorrelationCoefficient(MatthewsCorrelationCoefficient) - Constructor for class jsat.classifiers.evaluation.MatthewsCorrelationCoefficient
 
max() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
The maximum possible response value
max() - Method in class jsat.distributions.Beta
 
max() - Method in class jsat.distributions.Cauchy
 
max() - Method in class jsat.distributions.ChiSquared
 
max() - Method in class jsat.distributions.discrete.Binomial
 
max() - Method in class jsat.distributions.discrete.Poisson
 
max() - Method in class jsat.distributions.discrete.UniformDiscrete
 
max() - Method in class jsat.distributions.Distribution
The maximum value for which the #pdf(double) is meant to return a value.
max() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
max() - Method in class jsat.distributions.Exponential
 
max() - Method in class jsat.distributions.FisherSendor
 
max() - Method in class jsat.distributions.Gamma
 
max() - Method in class jsat.distributions.Kolmogorov
 
max() - Method in class jsat.distributions.Laplace
 
max() - Method in class jsat.distributions.Levy
 
max() - Method in class jsat.distributions.Logistic
 
max() - Method in class jsat.distributions.LogNormal
 
max() - Method in class jsat.distributions.LogUniform
 
max() - Method in class jsat.distributions.MaxwellBoltzmann
 
max() - Method in class jsat.distributions.Normal
 
max() - Method in class jsat.distributions.Pareto
 
max() - Method in class jsat.distributions.Rayleigh
 
max() - Method in class jsat.distributions.StudentT
 
max() - Method in class jsat.distributions.TruncatedDistribution
 
max() - Method in class jsat.distributions.Uniform
 
max() - Method in class jsat.distributions.Weibull
 
max() - Method in class jsat.linear.DenseVector
 
max() - Method in class jsat.linear.RandomVector
 
max() - Method in class jsat.linear.ScaledVector
 
max() - Method in class jsat.linear.ShiftedVec
 
max() - Method in class jsat.linear.SparseVector
 
max() - Method in class jsat.linear.Vec
Returns the maximum value stored in this vector
max() - Method in class jsat.linear.VecPaired
 
max(double...) - Static method in class jsat.math.MathTricks
 
Max2NormRegularizer - Class in jsat.classifiers.neuralnetwork.regularizers
This regularizer restricts the norm of each neuron's weights to be bounded by a fixed constant, and rescaled when the norm is exceeded.
Max2NormRegularizer(double) - Constructor for class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
 
maxBudget - Variable in class jsat.distributions.kernels.KernelPoint
 
MaxDistance - Class in jsat.clustering.evaluation.intra
Evaluates a cluster's validity by returning the maximum distance between any two points in the cluster.
MaxDistance() - Constructor for class jsat.clustering.evaluation.intra.MaxDistance
Creates a new MaxDistance measure using the EuclideanDistance
MaxDistance(DistanceMetric) - Constructor for class jsat.clustering.evaluation.intra.MaxDistance
Creates a new MaxDistance
MaxDistance(MaxDistance) - Constructor for class jsat.clustering.evaluation.intra.MaxDistance
Copy constructor
maxHistory - Variable in class jsat.driftdetectors.BaseDriftDetector
Controls the maximum amount of history to keep
maximumIterations - Variable in class jsat.clustering.kmeans.KernelKMeans
 
MaxIterLimit - Variable in class jsat.clustering.EMGaussianMixture
Control the maximum number of iterations to perform.
MaxIterLimit - Variable in class jsat.clustering.kmeans.KMeans
Control the maximum number of iterations to perform.
maxLambdaLogisticL1(ClassificationDataSet) - Static method in class jsat.classifiers.linear.LinearTools
If the linear model performs logistic regression regularized by λ ||w||1, this method computes the smallest value of lambda that produces a weight vector of all zeros.

Note, that the value returned depends on the data set size.
maxScaled - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The scaled maximum
maxSize() - Method in class jsat.utils.BoundedSortedList
Returns the maximum size allowed for the bounded list
MaxwellBoltzmann - Class in jsat.distributions
 
MaxwellBoltzmann() - Constructor for class jsat.distributions.MaxwellBoltzmann
 
MaxwellBoltzmann(double) - Constructor for class jsat.distributions.MaxwellBoltzmann
 
MDA - Class in jsat.classifiers.trees
Mean Decrease in Accuracy (MDA) measures feature importance by applying the classifier for each feature, and corruption one feature at a time as each dataum its pushed through the tree.
MDA() - Constructor for class jsat.classifiers.trees.MDA
 
MDI - Class in jsat.classifiers.trees
Determines the importance of features by measuring the decrease in impurity caused by each feature used, weighted by the amount of data seen by the node using the feature.
MDI(ImpurityScore.ImpurityMeasure) - Constructor for class jsat.classifiers.trees.MDI
 
MDI() - Constructor for class jsat.classifiers.trees.MDI
 
MDS - Class in jsat.datatransform.visualization
Multidimensional scaling is an algorithm for finding low dimensional embeddings of arbitrary distance matrices.
MDS() - Constructor for class jsat.datatransform.visualization.MDS
 
mean() - Method in class jsat.distributions.Beta
 
mean() - Method in class jsat.distributions.Cauchy
The Cauchy distribution is unique in that it does not have a mean value (undefined).
mean() - Method in class jsat.distributions.ChiSquared
 
mean() - Method in class jsat.distributions.ContinuousDistribution
 
mean() - Method in class jsat.distributions.discrete.Binomial
 
mean() - Method in class jsat.distributions.discrete.Poisson
 
mean() - Method in class jsat.distributions.discrete.UniformDiscrete
 
mean() - Method in class jsat.distributions.Distribution
Computes the mean value of the distribution
mean() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
mean() - Method in class jsat.distributions.Exponential
 
mean() - Method in class jsat.distributions.FisherSendor
 
mean() - Method in class jsat.distributions.Gamma
 
mean() - Method in class jsat.distributions.Kolmogorov
 
mean() - Method in class jsat.distributions.Laplace
 
mean() - Method in class jsat.distributions.Levy
 
mean() - Method in class jsat.distributions.Logistic
 
mean() - Method in class jsat.distributions.LogNormal
 
mean() - Method in class jsat.distributions.LogUniform
 
mean() - Method in class jsat.distributions.MaxwellBoltzmann
 
mean() - Method in class jsat.distributions.Normal
 
mean() - Method in class jsat.distributions.Pareto
 
mean() - Method in class jsat.distributions.Rayleigh
 
mean() - Method in class jsat.distributions.StudentT
 
mean() - Method in class jsat.distributions.Uniform
 
mean() - Method in class jsat.distributions.Weibull
 
mean() - Method in class jsat.linear.ConstantVector
 
mean() - Method in class jsat.linear.ScaledVector
 
mean() - Method in class jsat.linear.ShiftedVec
 
mean() - Method in class jsat.linear.Vec
Computes the mean value of all values stored in this vector
mean() - Method in class jsat.linear.VecPaired
 
MeanAbsoluteError - Class in jsat.regression.evaluation
Uses the Mean of Absolute Errors between the predictions and the true values.
MeanAbsoluteError() - Constructor for class jsat.regression.evaluation.MeanAbsoluteError
 
MeanAbsoluteError(MeanAbsoluteError) - Constructor for class jsat.regression.evaluation.MeanAbsoluteError
Copy constructor
MeanCentroidDistance - Class in jsat.clustering.evaluation.intra
Evaluates a cluster's validity by computing the mean distance of each point in the cluster from the cluster's centroid.
MeanCentroidDistance() - Constructor for class jsat.clustering.evaluation.intra.MeanCentroidDistance
Creates a new MeanCentroidDistance using the EuclideanDistance
MeanCentroidDistance(DistanceMetric) - Constructor for class jsat.clustering.evaluation.intra.MeanCentroidDistance
Creates a new MeanCentroidDistance.
MeanCentroidDistance(MeanCentroidDistance) - Constructor for class jsat.clustering.evaluation.intra.MeanCentroidDistance
Copy constructor
MeanDistance - Class in jsat.clustering.evaluation.intra
Evaluates a cluster's validity by computing the mean distance between all combinations of points.
MeanDistance() - Constructor for class jsat.clustering.evaluation.intra.MeanDistance
Creates a new MeanDistance using the EuclideanDistance
MeanDistance(DistanceMetric) - Constructor for class jsat.clustering.evaluation.intra.MeanDistance
Creates a new MeanDistance
MeanDistance(MeanDistance) - Constructor for class jsat.clustering.evaluation.intra.MeanDistance
Copy constructor
means - Variable in class jsat.clustering.kmeans.KMeans
The list of means
MeanShift - Class in jsat.clustering
The MeanShift algorithms performs clustering on a data set by letting the data speak for itself and performing a mode search amongst the data set, returning a cluster for each discovered mode.
MeanShift() - Constructor for class jsat.clustering.MeanShift
Creates a new MeanShift clustering object using a MetricKDE, the GaussKF, and the EuclideanDistance.
MeanShift(DistanceMetric) - Constructor for class jsat.clustering.MeanShift
Creates a new MeanShift clustering object using a MetricKDE and the GaussKF.
MeanShift(MultivariateKDE) - Constructor for class jsat.clustering.MeanShift
Creates a new MeanShift clustering object.
MeanShift(MeanShift) - Constructor for class jsat.clustering.MeanShift
Copy constructor
meanSqrdNorms - Variable in class jsat.clustering.kmeans.KernelKMeans
The value of the un-normalized squared norm for each mean
MeanSquaredError - Class in jsat.regression.evaluation
Uses the Mean of the Squared Errors between the predictions and the true values.
MeanSquaredError() - Constructor for class jsat.regression.evaluation.MeanSquaredError
 
MeanSquaredError(boolean) - Constructor for class jsat.regression.evaluation.MeanSquaredError
 
MeanSquaredError(MeanSquaredError) - Constructor for class jsat.regression.evaluation.MeanSquaredError
Copy constructor
meanToMeanDistance(int, int) - Method in class jsat.clustering.kmeans.KernelKMeans
Computes the distance between two of the means in the clustering
meanToMeanDistance(int, int, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
 
meanToMeanDistance(int, int, int[], ExecutorService) - Method in class jsat.clustering.kmeans.KernelKMeans
 
meanToMeanDistance(int, int, int[], int[], double) - Method in class jsat.clustering.kmeans.KernelKMeans
 
meanToMeanDistance(int, int, int[], int[], double, ExecutorService) - Method in class jsat.clustering.kmeans.KernelKMeans
 
meanVector(List<V>) - Static method in class jsat.linear.MatrixStatistics
Computes the mean of the given data set.
meanVector(DataSet) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted mean of the given data set.
meanVector(Vec, List<V>) - Static method in class jsat.linear.MatrixStatistics
Computes the mean of the given data set.
meanVector(Vec, DataSet) - Static method in class jsat.linear.MatrixStatistics
Computes the weighted mean of the data set
median() - Method in class jsat.distributions.Beta
 
median() - Method in class jsat.distributions.Cauchy
 
median() - Method in class jsat.distributions.ChiSquared
 
median() - Method in class jsat.distributions.discrete.Binomial
 
median() - Method in class jsat.distributions.discrete.UniformDiscrete
 
median() - Method in class jsat.distributions.Distribution
Computes the median value of the distribution
median() - Method in class jsat.distributions.Exponential
 
median() - Method in class jsat.distributions.FisherSendor
 
median() - Method in class jsat.distributions.Gamma
 
median() - Method in class jsat.distributions.Kolmogorov
 
median() - Method in class jsat.distributions.Laplace
 
median() - Method in class jsat.distributions.Logistic
 
median() - Method in class jsat.distributions.LogNormal
 
median() - Method in class jsat.distributions.LogUniform
 
median() - Method in class jsat.distributions.MaxwellBoltzmann
 
median() - Method in class jsat.distributions.Normal
 
median() - Method in class jsat.distributions.Rayleigh
 
median() - Method in class jsat.distributions.StudentT
 
median() - Method in class jsat.distributions.Uniform
 
median() - Method in class jsat.distributions.Weibull
 
median() - Method in class jsat.linear.ConstantVector
 
median() - Method in class jsat.linear.DenseVector
 
median() - Method in class jsat.linear.ScaledVector
 
median() - Method in class jsat.linear.ShiftedVec
 
median() - Method in class jsat.linear.SparseVector
 
median() - Method in class jsat.linear.Vec
Returns the median value in this vector
median() - Method in class jsat.linear.VecPaired
 
MedianDissimilarity - Class in jsat.clustering.dissimilarity
Median link dissimilarity, also called WPGMC.
MedianDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.MedianDissimilarity
 
MedianDissimilarity(MedianDissimilarity) - Constructor for class jsat.clustering.dissimilarity.MedianDissimilarity
 
medoids - Variable in class jsat.clustering.PAM
 
mergedView(List<T>, List<T>) - Static method in class jsat.utils.ListUtils
Returns a new unmodifiable view that is the merging of two lists
metricBound() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.CosineDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
metricBound() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
metricBound() - Method in interface jsat.linear.distancemetrics.DistanceMetric
All metrics must return values greater than or equal to 0.
metricBound() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.KernelDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.PearsonDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
metricBound() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
MetricKDE - Class in jsat.distributions.multivariate
MetricKDE is a generalization of the KernelDensityEstimator to the multivariate case.
MetricKDE() - Constructor for class jsat.distributions.multivariate.MetricKDE
Creates a new KDE object that still needs a data set to model the distribution of
MetricKDE(DistanceMetric) - Constructor for class jsat.distributions.multivariate.MetricKDE
Creates a new KDE object that still needs a data set to model the distribution of
MetricKDE(DistanceMetric, VectorCollectionFactory<VecPaired<Vec, Integer>>) - Constructor for class jsat.distributions.multivariate.MetricKDE
Creates a new KDE object that still needs a data set to model the distribution of
MetricKDE(KernelFunction, DistanceMetric) - Constructor for class jsat.distributions.multivariate.MetricKDE
 
MetricKDE(KernelFunction, DistanceMetric, VectorCollectionFactory<VecPaired<Vec, Integer>>) - Constructor for class jsat.distributions.multivariate.MetricKDE
Creates a new KDE object that still needs a data set to model the distribution of
MetricKDE(KernelFunction, DistanceMetric, VectorCollectionFactory<VecPaired<Vec, Integer>>, int, double) - Constructor for class jsat.distributions.multivariate.MetricKDE
Creates a new KDE object that still needs a data set to model the distribution of
MetricParameter - Class in jsat.parameters
A MetricParameter is a parameter controller for the DistanceMetric used by the current algorithm.
MetricParameter() - Constructor for class jsat.parameters.MetricParameter
 
min() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
The minimum possible response value
min() - Method in class jsat.distributions.Beta
 
min() - Method in class jsat.distributions.Cauchy
 
min() - Method in class jsat.distributions.ChiSquared
 
min() - Method in class jsat.distributions.discrete.Binomial
 
min() - Method in class jsat.distributions.discrete.Poisson
 
min() - Method in class jsat.distributions.discrete.UniformDiscrete
 
min() - Method in class jsat.distributions.Distribution
The minimum value for which the #pdf(double) is meant to return a value.
min() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
min() - Method in class jsat.distributions.Exponential
 
min() - Method in class jsat.distributions.FisherSendor
 
min() - Method in class jsat.distributions.Gamma
 
min() - Method in class jsat.distributions.Kolmogorov
 
min() - Method in class jsat.distributions.Laplace
 
min() - Method in class jsat.distributions.Levy
 
min() - Method in class jsat.distributions.Logistic
 
min() - Method in class jsat.distributions.LogNormal
 
min() - Method in class jsat.distributions.LogUniform
 
min() - Method in class jsat.distributions.MaxwellBoltzmann
 
min() - Method in class jsat.distributions.Normal
 
min() - Method in class jsat.distributions.Pareto
 
min() - Method in class jsat.distributions.Rayleigh
 
min() - Method in class jsat.distributions.StudentT
 
min() - Method in class jsat.distributions.TruncatedDistribution
 
min() - Method in class jsat.distributions.Uniform
 
min() - Method in class jsat.distributions.Weibull
 
min() - Method in class jsat.linear.DenseVector
 
min() - Method in class jsat.linear.RandomVector
 
min() - Method in class jsat.linear.ScaledVector
 
min() - Method in class jsat.linear.ShiftedVec
 
min() - Method in class jsat.linear.SparseVector
 
min() - Method in class jsat.linear.Vec
Returns the minimum value stored in this vector
min() - Method in class jsat.linear.VecPaired
 
min(double...) - Static method in class jsat.math.MathTricks
 
MiniBatchKMeans - Class in jsat.clustering.kmeans
Implements the mini-batch algorithms for k-means.
MiniBatchKMeans(int, int) - Constructor for class jsat.clustering.kmeans.MiniBatchKMeans
Creates a new Mini-Batch k-Means object that uses k-means++ for seed selection and uses the EuclideanDistance.
MiniBatchKMeans(DistanceMetric, int, int) - Constructor for class jsat.clustering.kmeans.MiniBatchKMeans
Creates a new Mini-Batch k-Means object that uses k-means++ for seed selection.
MiniBatchKMeans(DistanceMetric, int, int, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.kmeans.MiniBatchKMeans
Creates a new Mini-Batch k-Means object
MiniBatchKMeans(MiniBatchKMeans) - Constructor for class jsat.clustering.kmeans.MiniBatchKMeans
Copy constructor
minimize(double, int, double, double, int, Function, double...) - Static method in class jsat.math.optimization.GoldenSearch
Finds the local minimum of the function f.
MinkowskiDistance - Class in jsat.linear.distancemetrics
Minkowski Distance is the Lp norm.
MinkowskiDistance(double) - Constructor for class jsat.linear.distancemetrics.MinkowskiDistance
 
minScaled - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The scaled minimum
mode - Variable in class jsat.classifiers.calibration.BinaryCalibration
The calibration mode to use
mode() - Method in class jsat.distributions.Beta
 
mode() - Method in class jsat.distributions.Cauchy
 
mode() - Method in class jsat.distributions.ChiSquared
 
mode() - Method in class jsat.distributions.ContinuousDistribution
 
mode() - Method in class jsat.distributions.discrete.Binomial
 
mode() - Method in class jsat.distributions.discrete.Poisson
 
mode() - Method in class jsat.distributions.discrete.UniformDiscrete
 
mode() - Method in class jsat.distributions.Distribution
Computes the mode of the distribution.
mode() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
mode() - Method in class jsat.distributions.Exponential
 
mode() - Method in class jsat.distributions.FisherSendor
 
mode() - Method in class jsat.distributions.Gamma
 
mode() - Method in class jsat.distributions.Kolmogorov
 
mode() - Method in class jsat.distributions.Laplace
 
mode() - Method in class jsat.distributions.Levy
 
mode() - Method in class jsat.distributions.Logistic
 
mode() - Method in class jsat.distributions.LogNormal
 
mode() - Method in class jsat.distributions.LogUniform
 
mode() - Method in class jsat.distributions.MaxwellBoltzmann
 
mode() - Method in class jsat.distributions.Normal
 
mode() - Method in class jsat.distributions.Pareto
 
mode() - Method in class jsat.distributions.Rayleigh
 
mode() - Method in class jsat.distributions.StudentT
 
mode() - Method in class jsat.distributions.TruncatedDistribution
 
mode() - Method in class jsat.distributions.Uniform
 
mode() - Method in class jsat.distributions.Weibull
 
model(DataSet, int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Fits the LDA model against the given data set
model(DataSet, int, ExecutorService) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Fits the LDA model against the given data set
ModelMismatchException - Exception in jsat.exceptions
This exception is thrown when the input into a model does not match the expectation of the model.
ModelMismatchException(String, Throwable) - Constructor for exception jsat.exceptions.ModelMismatchException
 
ModelMismatchException(Throwable) - Constructor for exception jsat.exceptions.ModelMismatchException
 
ModelMismatchException(String) - Constructor for exception jsat.exceptions.ModelMismatchException
 
ModelMismatchException() - Constructor for exception jsat.exceptions.ModelMismatchException
 
ModelSearch - Class in jsat.parameters
This abstract class provides boilerplate for algorithms that search a model's parameter space to find the parameters that provide the best overall performance.
ModelSearch(Regressor, int) - Constructor for class jsat.parameters.ModelSearch
 
ModelSearch(Classifier, int) - Constructor for class jsat.parameters.ModelSearch
 
ModelSearch(ModelSearch) - Constructor for class jsat.parameters.ModelSearch
Copy constructor
ModestAdaBoost - Class in jsat.classifiers.boosting
Modest Ada Boost is a generalization of Discrete Ada Boost that attempts to reduce the generalization error and avoid over-fitting.
ModestAdaBoost(Classifier, int) - Constructor for class jsat.classifiers.boosting.ModestAdaBoost
Creates a new ModestBoost learner
ModestAdaBoost(ModestAdaBoost) - Constructor for class jsat.classifiers.boosting.ModestAdaBoost
Copy constructor
ModifiableCountDownLatch - Class in jsat.utils
Provides a CountDownLatch that can have the number of counts increased as well as decreased.
ModifiableCountDownLatch(int) - Constructor for class jsat.utils.ModifiableCountDownLatch
 
ModifiedOWLQN - Class in jsat.math.optimization
This implements the Modified Orthant-Wise Limited memory Quasi-Newton(mOWL-QN) optimizer.
ModifiedOWLQN() - Constructor for class jsat.math.optimization.ModifiedOWLQN
Creates a new mOWL-QN optimizer with no regularization penalty
ModifiedOWLQN(double) - Constructor for class jsat.math.optimization.ModifiedOWLQN
Creates a new mOWL-QN optimizer
ModifiedOWLQN(ModifiedOWLQN) - Constructor for class jsat.math.optimization.ModifiedOWLQN
copy constructor
mostLikely() - Method in class jsat.classifiers.CategoricalResults
Returns the category that is the most likely according to the current probability values
mu - Static variable in class jsat.text.GreekLetters
 
multCol(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]* c
multCol(Matrix, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]* c
MultinomialLogisticRegression - Class in jsat.classifiers
Multinomial Logistic Regression is an extension of LogisticRegression for classification when there are more then two target classes.
MultinomialLogisticRegression() - Constructor for class jsat.classifiers.MultinomialLogisticRegression
 
MultinomialNaiveBayes - Class in jsat.classifiers.bayesian
An implementation of the Multinomial Naive Bayes model (MNB).
MultinomialNaiveBayes() - Constructor for class jsat.classifiers.bayesian.MultinomialNaiveBayes
Creates a new Multinomial model with laplace smoothing
MultinomialNaiveBayes(double) - Constructor for class jsat.classifiers.bayesian.MultinomialNaiveBayes
Creates a new Multinomial model with the given amount of smoothing
MultinomialNaiveBayes(MultinomialNaiveBayes) - Constructor for class jsat.classifiers.bayesian.MultinomialNaiveBayes
Copy constructor
MultipleLinearRegression - Class in jsat.regression
 
MultipleLinearRegression() - Constructor for class jsat.regression.MultipleLinearRegression
 
MultipleLinearRegression(boolean) - Constructor for class jsat.regression.MultipleLinearRegression
 
multiply(Vec, double, Vec) - Method in class jsat.linear.DenseMatrix
 
multiply(Matrix, Matrix) - Method in class jsat.linear.DenseMatrix
 
multiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.DenseMatrix
 
multiply(double, Matrix, Vec) - Method in class jsat.linear.DenseVector
 
multiply(Vec, double, Vec) - Method in class jsat.linear.GenericMatrix
 
multiply(Matrix, Matrix) - Method in class jsat.linear.GenericMatrix
 
multiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.GenericMatrix
 
multiply(Vec, double, Vec) - Method in class jsat.linear.Matrix
If this matrix is Am x n, and b has a length of n, and c has a length of m, then this will mutate c to store c = c + A*b*z
multiply(Vec) - Method in class jsat.linear.Matrix
Creates a new vector that is equal to A*b
multiply(Matrix) - Method in class jsat.linear.Matrix
Creates a new matrix that stores A*B
multiply(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Creates a new matrix that stores A*B
multiply(Matrix, Matrix) - Method in class jsat.linear.Matrix
Alters the matrix C to be equal to C = C+A*B
multiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the matrix C to be equal to C = C+A*B
multiply(double) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores A*c
multiply(double, ExecutorService) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores A*c
multiply(Vec, double, Vec) - Method in class jsat.linear.MatrixOfVecs
 
multiply(double, Matrix, Vec) - Method in class jsat.linear.RandomVector
 
multiply(double, Matrix, Vec) - Method in class jsat.linear.ScaledVector
 
multiply(Vec, double, Vec) - Method in class jsat.linear.SparseMatrix
 
multiply(Matrix, Matrix) - Method in class jsat.linear.SparseMatrix
 
multiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.SparseMatrix
 
multiply(double, Matrix, Vec) - Method in class jsat.linear.SparseVector
 
multiply(double) - Method in class jsat.linear.Vec
Returns a new vector that is the result of this * c
multiply(Matrix) - Method in class jsat.linear.Vec
Returns a new vector that is the result of the vector matrix product thisTA
multiply(Matrix, Vec) - Method in class jsat.linear.Vec
If this is vector a, this this computes b = b + aT*A
multiply(double, Matrix, Vec) - Method in class jsat.linear.Vec
If this is vector a, this this computes b = b + c aT*A
multiply(double) - Method in class jsat.linear.VecPaired
 
multiply(double, Matrix, Vec) - Method in class jsat.linear.VecPaired
 
multiply(Complex) - Method in class jsat.math.Complex
Creates a new complex number containing the resulting multiplication between this and another
multiplyTranspose(Matrix, Matrix) - Method in class jsat.linear.GenericMatrix
 
multiplyTranspose(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.GenericMatrix
 
multiplyTranspose(Matrix, Matrix) - Method in class jsat.linear.Matrix
Alters the matrix C to be equal to C = C+A*BT
multiplyTranspose(Matrix) - Method in class jsat.linear.Matrix
Returns the new matrix C that is C = A*BT
multiplyTranspose(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the matrix C to be equal to C = C+A*BT
multiplyTranspose(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Returns the new matrix C that is C = A*BT
multiplyTranspose(Matrix, Matrix) - Method in class jsat.linear.SparseMatrix
 
multiplyTranspose(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.SparseMatrix
 
MultivariateDistribution - Interface in jsat.distributions.multivariate
This interface represents the contract that any continuous multivariate distribution must implement
MultivariateDistributionSkeleton - Class in jsat.distributions.multivariate
Common class for implementing a multivariate distribution.
MultivariateDistributionSkeleton() - Constructor for class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
MultivariateKDE - Class in jsat.distributions.multivariate
There are several methods of generalizing the KernelDensityEstimator to the multivariate case.
MultivariateKDE() - Constructor for class jsat.distributions.multivariate.MultivariateKDE
 
MultivariateNormals - Class in jsat.classifiers.bayesian
This classifier can be seen as an extension of NaiveBayes.
MultivariateNormals(boolean) - Constructor for class jsat.classifiers.bayesian.MultivariateNormals
 
MultivariateNormals() - Constructor for class jsat.classifiers.bayesian.MultivariateNormals
Creates a new class for classification by feating each class to a Multivariate Normal Distribution.
MultivariateNormals(MultivariateNormals) - Constructor for class jsat.classifiers.bayesian.MultivariateNormals
Copy constructor
multRow(Matrix, int, int, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] * c
multRow(Matrix, int, double) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] * c
multRow(Matrix, int, int, int, Vec) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i] The Matrix A and vector c do not need to have the same dimensions, so long as they both have indices in the given range.
multRow(Matrix, int, Vec) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i] The Matrix A and vector c do not need to have the same dimensions, so long as they both have indices in the given range.
multRow(Matrix, int, int, int, double[]) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i] The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range.
multRow(Matrix, int, double[]) - Static method in class jsat.linear.RowColumnOps
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i]
mutableAdd(Vec) - Method in class jsat.distributions.kernels.KernelPoint
Alters this point to contain the given input vector as well
mutableAdd(double, Vec) - Method in class jsat.distributions.kernels.KernelPoint
Alters this point to contain the given input vector as well
mutableAdd(double, Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoint
Alters this point to contain the given input vector as well
mutableAdd(int, double, Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoints
Alters ones of the KernelPoint objects by adding / subtracting a vector from it
mutableAdd(Vec, Vec, List<Double>) - Method in class jsat.distributions.kernels.KernelPoints
Alters some of the KernelPoints by adding / subtracting a vector from it
mutableAdd(double, Vec) - Method in class jsat.linear.ConcatenatedVec
 
mutableAdd(double, Matrix) - Method in class jsat.linear.DenseMatrix
 
mutableAdd(double) - Method in class jsat.linear.DenseVector
 
mutableAdd(double, Vec) - Method in class jsat.linear.DenseVector
 
mutableAdd(double, Matrix) - Method in class jsat.linear.GenericMatrix
 
mutableAdd(double, Matrix, ExecutorService) - Method in class jsat.linear.GenericMatrix
 
mutableAdd(double) - Method in class jsat.linear.GenericMatrix
 
mutableAdd(double, ExecutorService) - Method in class jsat.linear.GenericMatrix
 
mutableAdd(Matrix) - Method in class jsat.linear.Matrix
Alters the current matrix to store the value A+B
mutableAdd(double, Matrix) - Method in class jsat.linear.Matrix
Alters the current matrix to store the value A+c*B
mutableAdd(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to store the value A+B
mutableAdd(double, Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to store the value A+c*B
mutableAdd(double) - Method in class jsat.linear.Matrix
Alters the current matrix to store the value A+c
mutableAdd(double, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to store the value A+c
mutableAdd(double) - Method in class jsat.linear.MatrixOfVecs
 
mutableAdd(double) - Method in class jsat.linear.RandomVector
 
mutableAdd(double, Vec) - Method in class jsat.linear.RandomVector
 
mutableAdd(double) - Method in class jsat.linear.ScaledVector
 
mutableAdd(double, Vec) - Method in class jsat.linear.ScaledVector
 
mutableAdd(Vec) - Method in class jsat.linear.ShiftedVec
 
mutableAdd(double) - Method in class jsat.linear.ShiftedVec
 
mutableAdd(double, Vec) - Method in class jsat.linear.ShiftedVec
 
mutableAdd(double, Matrix) - Method in class jsat.linear.SparseMatrix
 
mutableAdd(double, Matrix, ExecutorService) - Method in class jsat.linear.SparseMatrix
 
mutableAdd(double) - Method in class jsat.linear.SparseMatrix
 
mutableAdd(double, ExecutorService) - Method in class jsat.linear.SparseMatrix
 
mutableAdd(double) - Method in class jsat.linear.SparseVector
 
mutableAdd(double, Vec) - Method in class jsat.linear.SparseVector
 
mutableAdd(double) - Method in class jsat.linear.Vec
Alters this vector such that this = this + c

This method should be overloaded for a serious implementation.
mutableAdd(double, Vec) - Method in class jsat.linear.Vec
Alters this vector such that this = this + c * b

This method should be overloaded for a serious implementation.
mutableAdd(Vec) - Method in class jsat.linear.Vec
Alters this vector such that this = this + b
mutableAdd(double) - Method in class jsat.linear.VecPaired
 
mutableAdd(Vec) - Method in class jsat.linear.VecPaired
 
mutableAdd(double, Vec) - Method in class jsat.linear.VecPaired
 
mutableAdd(double) - Method in class jsat.linear.VecWithNorm
 
mutableAdd(double, Vec) - Method in class jsat.linear.VecWithNorm
 
mutableAdd(double, double) - Method in class jsat.math.Complex
Alters this complex number as if an addition of another complex number was performed.
mutableAdd(Complex) - Method in class jsat.math.Complex
Alters this complex number to contain the result of the addition of another
mutableDivide(double) - Method in class jsat.linear.DenseVector
 
mutableDivide(double) - Method in class jsat.linear.RandomVector
 
mutableDivide(double) - Method in class jsat.linear.ScaledVector
 
mutableDivide(double) - Method in class jsat.linear.ShiftedVec
 
mutableDivide(double) - Method in class jsat.linear.SparseVector
 
mutableDivide(double) - Method in class jsat.linear.Vec
Mutates this /= c

This method should be overloaded for a serious implementation.
mutableDivide(double) - Method in class jsat.linear.VecPaired
 
mutableDivide(double) - Method in class jsat.linear.VecWithNorm
 
mutableDivide(double, double) - Method in class jsat.math.Complex
Alters this complex number as if a division by another complex number was performed.
mutableDivide(Complex) - Method in class jsat.math.Complex
Alters this complex number to contain the result of the division by another
mutableInverse(DataPoint) - Method in interface jsat.datatransform.InPlaceInvertibleTransform
Mutates the given data point.
mutableInverse(DataPoint) - Method in class jsat.datatransform.LinearTransform
 
mutableInverse(DataPoint) - Method in class jsat.datatransform.ZeroMeanTransform
 
mutableMultiply(double) - Method in class jsat.distributions.kernels.KernelPoint
Alters this point to be multiplied by the given value
mutableMultiply(int, double) - Method in class jsat.distributions.kernels.KernelPoints
Alters the k'th KernelPoint by multiplying it with a constant value
mutableMultiply(double) - Method in class jsat.distributions.kernels.KernelPoints
Alters all the KernelPoint objects contained in this set by the same constant value
mutableMultiply(double) - Method in class jsat.linear.DenseMatrix
 
mutableMultiply(double) - Method in class jsat.linear.DenseVector
 
mutableMultiply(double) - Method in class jsat.linear.GenericMatrix
 
mutableMultiply(double, ExecutorService) - Method in class jsat.linear.GenericMatrix
 
mutableMultiply(double) - Method in class jsat.linear.Matrix
Alters the current matrix to be equal to A*c
mutableMultiply(double, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to be equal to A*c
mutableMultiply(double) - Method in class jsat.linear.MatrixOfVecs
 
mutableMultiply(double) - Method in class jsat.linear.RandomVector
 
mutableMultiply(double) - Method in class jsat.linear.ScaledVector
 
mutableMultiply(double) - Method in class jsat.linear.ShiftedVec
 
mutableMultiply(double) - Method in class jsat.linear.SparseMatrix
 
mutableMultiply(double, ExecutorService) - Method in class jsat.linear.SparseMatrix
 
mutableMultiply(double) - Method in class jsat.linear.SparseVector
 
mutableMultiply(double) - Method in class jsat.linear.Vec
Mutates this *= c

This method should be overloaded for a serious implementation.
mutableMultiply(double) - Method in class jsat.linear.VecPaired
 
mutableMultiply(double) - Method in class jsat.linear.VecWithNorm
 
mutableMultiply(double, double) - Method in class jsat.math.Complex
Alters this complex number as if a multiplication of another complex number was performed.
mutableMultiply(Complex) - Method in class jsat.math.Complex
Alters this complex number to contain the result of the multiplication of another
mutablePairwiseDivide(Vec) - Method in class jsat.linear.DenseVector
 
mutablePairwiseDivide(Vec) - Method in class jsat.linear.RandomVector
 
mutablePairwiseDivide(Vec) - Method in class jsat.linear.ScaledVector
 
mutablePairwiseDivide(Vec) - Method in class jsat.linear.ShiftedVec
 
mutablePairwiseDivide(Vec) - Method in class jsat.linear.SparseVector
 
mutablePairwiseDivide(Vec) - Method in class jsat.linear.Vec
Mutates this by dividing each value by the value in b that has the same index

This method should be overloaded for a serious implementation.
mutablePairwiseDivide(Vec) - Method in class jsat.linear.VecPaired
 
mutablePairwiseDivide(Vec) - Method in class jsat.linear.VecWithNorm
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.DenseVector
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.RandomVector
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.ScaledVector
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.ShiftedVec
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.SparseVector
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.Vec
Mutates this by multiplying each value by the value in b that has the same index.
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.VecPaired
 
mutablePairwiseMultiply(Vec) - Method in class jsat.linear.VecWithNorm
 
mutableSubtract(double) - Method in class jsat.linear.DenseVector
 
mutableSubtract(Matrix) - Method in class jsat.linear.Matrix
Alters the current matrix to store A-B
mutableSubtract(double, Matrix) - Method in class jsat.linear.Matrix
Alters the current matrix to store A-c*B
mutableSubtract(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to store A-B
mutableSubtract(double, Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to store A-c*B
mutableSubtract(double) - Method in class jsat.linear.Matrix
Alters the current matrix to store A-c
mutableSubtract(double, ExecutorService) - Method in class jsat.linear.Matrix
Alters the current matrix to store A-c
mutableSubtract(double) - Method in class jsat.linear.Vec
Alters this vector such that this = this - c
mutableSubtract(double, Vec) - Method in class jsat.linear.Vec
Alters this vector such that this = this - c * b
mutableSubtract(Vec) - Method in class jsat.linear.Vec
Alters this vector such that this = this - b
mutableSubtract(Vec) - Method in class jsat.linear.VecPaired
 
mutableSubtract(double, double) - Method in class jsat.math.Complex
Alters this complex number as if a subtraction of another complex number was performed.
mutableSubtract(Complex) - Method in class jsat.math.Complex
Alters this complex number to contain the result of the subtraction of another
mutableTransform(DataPoint) - Method in class jsat.datatransform.AutoDeskewTransform
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.Imputer
 
mutableTransform(DataPoint) - Method in interface jsat.datatransform.InPlaceTransform
Mutates the given data point.
mutableTransform(DataPoint) - Method in class jsat.datatransform.InsertMissingValuesTransform
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.LinearTransform
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.PNormNormalization
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.StandardizeTransform
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.UnitVarianceTransform
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.WhitenedZCA
 
mutableTransform(DataPoint) - Method in class jsat.datatransform.ZeroMeanTransform
 
mutableTranspose() - Method in class jsat.linear.DenseMatrix
 
mutableTranspose() - Method in class jsat.linear.GenericMatrix
 
mutableTranspose() - Method in class jsat.linear.Matrix
Transposes the current matrix in place, altering its value.
mutableTranspose() - Method in class jsat.linear.SparseMatrix
 
mutateConjugate() - Method in class jsat.math.Complex
Alters this complex number so that it represents its complex conjugate instead.
mutatesNominal() - Method in class jsat.datatransform.AutoDeskewTransform
 
mutatesNominal() - Method in class jsat.datatransform.Imputer
 
mutatesNominal() - Method in interface jsat.datatransform.InPlaceTransform
By default returns false.
mutatesNominal() - Method in class jsat.datatransform.InsertMissingValuesTransform
 
mutatesNominal() - Method in class jsat.datatransform.LinearTransform
 
mutatesNominal() - Method in class jsat.datatransform.PNormNormalization
 
mutatesNominal() - Method in class jsat.datatransform.StandardizeTransform
 
mutatesNominal() - Method in class jsat.datatransform.UnitVarianceTransform
 
mutatesNominal() - Method in class jsat.datatransform.WhitenedZCA
 
mutatesNominal() - Method in class jsat.datatransform.ZeroMeanTransform
 
MutualInfoFS - Class in jsat.datatransform.featureselection
Performs greedy feature selection based on Mutual Information of the features with respect to the class values.
MutualInfoFS() - Constructor for class jsat.datatransform.featureselection.MutualInfoFS
Creates a new Mutual Information feature selection object that attempts to select up to 100 features.
MutualInfoFS(int) - Constructor for class jsat.datatransform.featureselection.MutualInfoFS
Creates a new Mutual Information feature selection object.
MutualInfoFS(ClassificationDataSet, int) - Constructor for class jsat.datatransform.featureselection.MutualInfoFS
Creates a new Mutual Information feature selection object.
MutualInfoFS(MutualInfoFS) - Constructor for class jsat.datatransform.featureselection.MutualInfoFS
Copy constructor
MutualInfoFS(int, MutualInfoFS.NumericalHandeling) - Constructor for class jsat.datatransform.featureselection.MutualInfoFS
Creates a new Mutual Information feature selection object.
MutualInfoFS(ClassificationDataSet, int, MutualInfoFS.NumericalHandeling) - Constructor for class jsat.datatransform.featureselection.MutualInfoFS
Creates a new Mutual Information feature selection object.
MutualInfoFS.NumericalHandeling - Enum in jsat.datatransform.featureselection
The definition for mutual information for continuous attributes requires an integration of an unknown function, as such requires some form of approximation.

N

NAdaGrad - Class in jsat.math.optimization.stochastic
Normalized AdaGrad provides an adaptive learning rate for each individual feature, and is mostly scale invariant to the data distribution.
NAdaGrad() - Constructor for class jsat.math.optimization.stochastic.NAdaGrad
Creates a new NAdaGrad updater
NAdaGrad(NAdaGrad) - Constructor for class jsat.math.optimization.stochastic.NAdaGrad
Copy constructor
NadarayaWatson - Class in jsat.regression
The Nadaraya-Watson regressor uses the Kernel Density Estimator to perform regression on a data set.
NadarayaWatson(MultivariateKDE) - Constructor for class jsat.regression.NadarayaWatson
 
NaiveBayes - Class in jsat.classifiers.bayesian
Provides an implementation of the Naive Bayes classifier that assumes numeric features come from some continuous probability distribution.
NaiveBayes(NaiveBayes.NumericalHandeling) - Constructor for class jsat.classifiers.bayesian.NaiveBayes
Creates a new Naive Bayes classifier that uses the specific method for handling numeric features.
NaiveBayes() - Constructor for class jsat.classifiers.bayesian.NaiveBayes
Creates a new Gaussian Naive Bayes classifier
NaiveBayes.NumericalHandeling - Enum in jsat.classifiers.bayesian
There are multiple ways of handling numerical attributes.
NaiveBayesUpdateable - Class in jsat.classifiers.bayesian
An implementation of Gaussian Naive Bayes that can be updated in an online fashion.
NaiveBayesUpdateable() - Constructor for class jsat.classifiers.bayesian.NaiveBayesUpdateable
Creates a new Naive Bayes classifier that assumes sparce input vectors
NaiveBayesUpdateable(boolean) - Constructor for class jsat.classifiers.bayesian.NaiveBayesUpdateable
Creates a new Naive Bayes classifier
NaiveBayesUpdateable(NaiveBayesUpdateable) - Constructor for class jsat.classifiers.bayesian.NaiveBayesUpdateable
Copy Constructor
NaiveKMeans - Class in jsat.clustering.kmeans
An implementation of Lloyd's K-Means clustering algorithm using the naive algorithm.
NaiveKMeans() - Constructor for class jsat.clustering.kmeans.NaiveKMeans
Creates a new naive k-Means cluster using k-means++ for the seed selection and the EuclideanDistance
NaiveKMeans(DistanceMetric) - Constructor for class jsat.clustering.kmeans.NaiveKMeans
Creates a new naive k-Means cluster using k-means++ for the seed selection.
NaiveKMeans(DistanceMetric, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.kmeans.NaiveKMeans
Creates a new naive k-Means cluster
NaiveKMeans(DistanceMetric, SeedSelectionMethods.SeedSelection, Random) - Constructor for class jsat.clustering.kmeans.NaiveKMeans
Creates a new naive k-Means cluster
NaiveKMeans(NaiveKMeans) - Constructor for class jsat.clustering.kmeans.NaiveKMeans
Copy constructor
NaiveTokenizer - Class in jsat.text.tokenizer
A simple tokenizer.
NaiveTokenizer() - Constructor for class jsat.text.tokenizer.NaiveTokenizer
Creates a new naive tokenizer that converts words to lower case
NaiveTokenizer(boolean) - Constructor for class jsat.text.tokenizer.NaiveTokenizer
Creates a new naive tokenizer
naturalComparator - Static variable in class jsat.utils.IntPriorityQueue
 
NB2 - Static variable in class jsat.linear.GenericMatrix
Step size if the computation accesses 2*NB2^2 * dataTypeSize data, so that the data being worked on fits into the L2 cache
nearestCentroidDist - Variable in class jsat.clustering.kmeans.KMeans
Distance from a datapoint to its nearest centroid.
NearestNeighbour - Class in jsat.classifiers.knn
An implementation of the Nearest Neighbor algorithm, but with a British spelling! How fancy.
NearestNeighbour(int) - Constructor for class jsat.classifiers.knn.NearestNeighbour
Constructs a new Nearest Neighbor Classifier
NearestNeighbour(int, VectorCollectionFactory<VecPaired<Vec, Double>>) - Constructor for class jsat.classifiers.knn.NearestNeighbour
Constructs a new Nearest Neighbor Classifier
NearestNeighbour(int, boolean) - Constructor for class jsat.classifiers.knn.NearestNeighbour
Constructs a new Nearest Neighbor Classifier
NearestNeighbour(int, boolean, DistanceMetric) - Constructor for class jsat.classifiers.knn.NearestNeighbour
Constructs a new Nearest Neighbor Classifier
NearestNeighbour(int, boolean, DistanceMetric, VectorCollectionFactory<VecPaired<Vec, Double>>) - Constructor for class jsat.classifiers.knn.NearestNeighbour
Constructs a new Nearest Neighbor Classifier
needsTraining() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
needsTraining() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
needsTraining() - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Returns true if the metric needs to be trained.
NelderMead - Class in jsat.math.optimization
The Nelder-Mean algorithm is a simple directed search method.
NelderMead() - Constructor for class jsat.math.optimization.NelderMead
 
newDesignations - Variable in class jsat.clustering.kmeans.KernelKMeans
A temporary space for updating ownership designations for each datapoint.
NewGLMNET - Class in jsat.classifiers.linear
NewGLMNET is a batch method for solving Elastic Net regularized Logistic Regression problems of the form
0.5 * (1-α) ||w||2 + α * ||w||1 + C * Ni=1 ℓ (wT xi + b, yi).
NewGLMNET() - Constructor for class jsat.classifiers.linear.NewGLMNET
Creates a new L1 regularized Logistic Regression solver with C = 1.
NewGLMNET(double) - Constructor for class jsat.classifiers.linear.NewGLMNET
Creates a new L1 regularized Logistic Regression solver
NewGLMNET(double, double) - Constructor for class jsat.classifiers.linear.NewGLMNET
Creates a new Elastic Net regularized Logistic Regression solver
NewGLMNET(NewGLMNET) - Constructor for class jsat.classifiers.linear.NewGLMNET
Copy constructor
newText(String) - Method in class jsat.text.BasicTextVectorCreator
 
newText(String, StringBuilder, List<String>) - Method in class jsat.text.BasicTextVectorCreator
 
newText(String) - Method in class jsat.text.HashedTextDataLoader
 
newText(String, StringBuilder, List<String>) - Method in class jsat.text.HashedTextDataLoader
 
newText(String) - Method in class jsat.text.HashedTextVectorCreator
 
newText(String, StringBuilder, List<String>) - Method in class jsat.text.HashedTextVectorCreator
 
newText(String) - Method in class jsat.text.TextDataLoader
To be called after all original texts have been loaded.
newText(String, StringBuilder, List<String>) - Method in class jsat.text.TextDataLoader
 
newText(String) - Method in interface jsat.text.TextVectorCreator
Converts the given input text into a vector representation.
newText(String, StringBuilder, List<String>) - Method in interface jsat.text.TextVectorCreator
Converts the given input text into a vector representation
next(int) - Method in class jsat.utils.random.CMWC4096
 
next(int) - Method in class jsat.utils.random.XOR128
 
next(int) - Method in class jsat.utils.random.XOR96
 
next(int) - Method in class jsat.utils.random.XORWOW
 
nextDouble() - Method in class jsat.utils.random.XOR128
 
nextDouble() - Method in class jsat.utils.random.XOR96
 
nextDouble() - Method in class jsat.utils.random.XORWOW
 
nextID - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
nextLong() - Method in class jsat.utils.random.XOR128
 
nextLong() - Method in class jsat.utils.random.XOR96
 
nextLong() - Method in class jsat.utils.random.XORWOW
 
NGramTokenizer - Class in jsat.text.tokenizer
This tokenizer creates n-grams, which are sequences of tokens combined into their own larger token.
NGramTokenizer(int, Tokenizer, boolean) - Constructor for class jsat.text.tokenizer.NGramTokenizer
Creates a new n-gramer
NHERD - Class in jsat.classifiers.linear
Implementation of the Normal Herd (NHERD) algorithm for learning a linear binary classifier.
NHERD(double, NHERD.CovMode) - Constructor for class jsat.classifiers.linear.NHERD
Creates a new NHERD learner
NHERD(NHERD) - Constructor for class jsat.classifiers.linear.NHERD
Copy constructor
NHERD.CovMode - Enum in jsat.classifiers.linear
Sets what form of covariance matrix to use
NNChainHAC - Class in jsat.clustering.hierarchical
This class implements Hierarchical Agglomerative Clustering via the Nearest Neighbor Chain approach.
NNChainHAC() - Constructor for class jsat.clustering.hierarchical.NNChainHAC
Creates a new NNChainHAC using the Ward method.
NNChainHAC(LanceWilliamsDissimilarity) - Constructor for class jsat.clustering.hierarchical.NNChainHAC
Creates a new NNChainHAC
NNChainHAC(LanceWilliamsDissimilarity, DistanceMetric) - Constructor for class jsat.clustering.hierarchical.NNChainHAC
Creates a new NNChain using the given dissimilarity measure and distance metric.
NNChainHAC(NNChainHAC) - Constructor for class jsat.clustering.hierarchical.NNChainHAC
Copy constructor
nnz() - Method in class jsat.linear.ConcatenatedVec
 
nnz() - Method in class jsat.linear.Matrix
Returns the number of non zero values stored in this matrix.
nnz() - Method in class jsat.linear.Poly2Vec
 
nnz() - Method in class jsat.linear.ScaledVector
 
nnz() - Method in class jsat.linear.SparseMatrix
 
nnz() - Method in class jsat.linear.SparseVector
 
nnz() - Method in class jsat.linear.Vec
Computes the number of non zero values in this vector
nnz() - Method in class jsat.linear.VecPaired
 
nnz() - Method in class jsat.linear.VecWithNorm
 
Node(DecisionStump) - Constructor for class jsat.classifiers.trees.DecisionTree.Node
 
NoDecay - Class in jsat.math.decayrates
A possible value for a decaying learning rate.
NoDecay() - Constructor for class jsat.math.decayrates.NoDecay
 
noLoss(double) - Method in enum jsat.io.JSATData.FloatStorageMethod
 
NominalToNumeric - Class in jsat.datatransform
This transform converts nominal feature values to numeric ones be adding a new numeric feature for each possible categorical value for each nominal feature.
NominalToNumeric() - Constructor for class jsat.datatransform.NominalToNumeric
Creates a new transform to convert categorical to numeric features
NominalToNumeric(DataSet) - Constructor for class jsat.datatransform.NominalToNumeric
Creates a new transform to convert categorical to numeric features for the given dataset
NominalToNumeric(NominalToNumeric) - Constructor for class jsat.datatransform.NominalToNumeric
Copy constructor
noMoreAdding - Variable in class jsat.text.HashedTextDataLoader
 
noMoreAdding - Variable in class jsat.text.TextDataLoader
true when TextDataLoader.finishAdding() is called, and no new original documents can be inserted
Normal - Class in jsat.distributions
 
Normal() - Constructor for class jsat.distributions.Normal
 
Normal(double, double) - Constructor for class jsat.distributions.Normal
 
normalize() - Method in class jsat.classifiers.CategoricalResults
Adjusts the probabilities by dividing each value by the total sum, so that all values are in the range [0, 1]
normalize() - Method in class jsat.linear.DenseVector
 
normalize() - Method in class jsat.linear.SparseVector
 
normalize() - Method in class jsat.linear.Vec
Mutates this vector to be normalized by the L2 norm
normalize() - Method in class jsat.linear.VecPaired
 
normalized() - Method in class jsat.distributions.kernels.BaseKernelTrick
 
normalized() - Method in class jsat.distributions.kernels.GeneralRBFKernel
 
normalized() - Method in interface jsat.distributions.kernels.KernelTrick
This method indicates if a kernel is a normalized kernel or not.
normalized() - Method in class jsat.distributions.kernels.NormalizedKernel
 
normalized() - Method in class jsat.distributions.kernels.PukKernel
 
normalized() - Method in class jsat.distributions.kernels.RationalQuadraticKernel
 
normalized() - Method in class jsat.distributions.kernels.RBFKernel
 
normalized() - Method in class jsat.linear.ConstantVector
 
normalized() - Method in class jsat.linear.Vec
Returns a new vector that is the result of normalizing this vector by the L2 norm
normalized() - Method in class jsat.linear.VecPaired
 
NormalizedEuclideanDistance - Class in jsat.linear.distancemetrics
Implementation of the Normalized Euclidean Distance Metric.
NormalizedEuclideanDistance() - Constructor for class jsat.linear.distancemetrics.NormalizedEuclideanDistance
Creates a new Normalized Euclidean distance metric
NormalizedKernel - Class in jsat.distributions.kernels
This provides a wrapper kernel that produces a normalized kernel trick from any input kernel trick.
NormalizedKernel(KernelTrick) - Constructor for class jsat.distributions.kernels.NormalizedKernel
 
NormalizedMutualInformation - Class in jsat.clustering.evaluation
Normalized Mutual Information (NMI) is a measure to evaluate a cluster based on the true class labels for the data set.
NormalizedMutualInformation() - Constructor for class jsat.clustering.evaluation.NormalizedMutualInformation
 
NormalM - Class in jsat.distributions.multivariate
Class for the multivariate Normal distribution.
NormalM(Vec, Matrix) - Constructor for class jsat.distributions.multivariate.NormalM
 
NormalM() - Constructor for class jsat.distributions.multivariate.NormalM
 
normConsts - Variable in class jsat.clustering.kmeans.KernelKMeans
The normalizing constant for each mean.
nu - Static variable in class jsat.text.GreekLetters
 
numCategorical() - Method in class jsat.classifiers.trees.DecisionStump
 
numCategoricalValues() - Method in class jsat.classifiers.DataPoint
Returns the number of categorical variables in this data point.
numeric_imputs - Variable in class jsat.datatransform.Imputer
The values to impute for missing numeric columns
NumericalToHistogram - Class in jsat.datatransform
This transform converts numerical features into categorical ones via a simple histogram.
NumericalToHistogram() - Constructor for class jsat.datatransform.NumericalToHistogram
Creates a new transform which will use at most 25 bins when converting numeric features.
NumericalToHistogram(DataSet) - Constructor for class jsat.datatransform.NumericalToHistogram
Creates a new transform which will use O(sqrt(n)) bins for each numeric feature, where n is the number of data points in the dataset.
NumericalToHistogram(int) - Constructor for class jsat.datatransform.NumericalToHistogram
Creates a new transform which will use at most the specified number of bins
NumericalToHistogram(DataSet, int) - Constructor for class jsat.datatransform.NumericalToHistogram
Creates a new transform which will use the specified number of bins for each numeric feature.
numericalValues - Variable in class jsat.classifiers.DataPoint
 
numericalVariableNames - Variable in class jsat.DataSet
The list, in order, of the names of the numeric variables.
numIndexMap - Variable in class jsat.datatransform.RemoveAttributeTransform
 
numNumeric() - Method in class jsat.classifiers.trees.DecisionStump
 
numNumericalValues() - Method in class jsat.classifiers.DataPoint
Returns the number of numerical variables in this data point.
numNumerVals - Variable in class jsat.DataSet
The number of numerical values each data point must have
numWeightsVecs() - Method in class jsat.classifiers.linear.ALMA2
 
numWeightsVecs() - Method in class jsat.classifiers.linear.AROW
 
numWeightsVecs() - Method in class jsat.classifiers.linear.BBR
 
numWeightsVecs() - Method in class jsat.classifiers.linear.LinearBatch
 
numWeightsVecs() - Method in class jsat.classifiers.linear.LinearSGD
 
numWeightsVecs() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
numWeightsVecs() - Method in class jsat.classifiers.linear.NewGLMNET
 
numWeightsVecs() - Method in class jsat.classifiers.linear.NHERD
 
numWeightsVecs() - Method in class jsat.classifiers.linear.PassiveAggressive
 
numWeightsVecs() - Method in class jsat.classifiers.linear.ROMMA
 
numWeightsVecs() - Method in class jsat.classifiers.linear.SCD
 
numWeightsVecs() - Method in class jsat.classifiers.linear.SCW
 
numWeightsVecs() - Method in class jsat.classifiers.linear.SPA
 
numWeightsVecs() - Method in class jsat.classifiers.linear.STGD
 
numWeightsVecs() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
numWeightsVecs() - Method in class jsat.classifiers.linear.StochasticSTLinearL1
 
numWeightsVecs() - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
numWeightsVecs() - Method in class jsat.classifiers.svm.DCD
 
numWeightsVecs() - Method in class jsat.classifiers.svm.DCDs
 
numWeightsVecs() - Method in class jsat.classifiers.svm.Pegasos
 
numWeightsVecs() - Method in class jsat.regression.LogisticRegression
 
numWeightsVecs() - Method in class jsat.regression.MultipleLinearRegression
 
numWeightsVecs() - Method in class jsat.regression.StochasticRidgeRegression
 
numWeightsVecs() - Method in interface jsat.SimpleWeightVectorModel
Returns the number of weight vectors that can be returned.
Nystrom - Class in jsat.datatransform.kernel
An implementation of the Nystrom approximation for any Kernel Trick.
Nystrom(KernelTrick, DataSet, int, Nystrom.SamplingMethod) - Constructor for class jsat.datatransform.kernel.Nystrom
Creates a new Nystrom approximation object
Nystrom() - Constructor for class jsat.datatransform.kernel.Nystrom
Creates a new Nystrom approximation object using the RBF Kernel with 500 basis vectors
Nystrom(KernelTrick, int) - Constructor for class jsat.datatransform.kernel.Nystrom
Creates a new Nystrom approximation object
Nystrom(KernelTrick, int, Nystrom.SamplingMethod, double, boolean) - Constructor for class jsat.datatransform.kernel.Nystrom
Creates a new Nystrom approximation object
Nystrom(KernelTrick, DataSet, int, Nystrom.SamplingMethod, double, boolean) - Constructor for class jsat.datatransform.kernel.Nystrom
Creates a new Nystrom approximation object
Nystrom(Nystrom) - Constructor for class jsat.datatransform.kernel.Nystrom
Copy constructor
Nystrom.SamplingMethod - Enum in jsat.datatransform.kernel
Different sample methods may be used to select a better and more representative set of vectors to form the basis vectors at increased cost, where n is the number of data points in the full data set and b is the number of basis vectors to obtain.

O

ObjectParameter<T> - Class in jsat.parameters
A parameter that could be one of a finite number of possible objects.
ObjectParameter() - Constructor for class jsat.parameters.ObjectParameter
 
obvMax - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The maximum observed value for each feature
obvMin - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The minimum observed value for each feature
OCCUPIED - Static variable in class jsat.utils.ClosedHashingUtil
This value indicates that the status of an open addressing space is OCCUPIED, meaning it is in use.
ODE - Class in jsat.classifiers.bayesian
One-Dependence Estimators (ODE) is an extension of Naive Bayes that, instead of assuming all features are independent, assumes all features are dependent on one other feature besides the target class.
ODE(int) - Constructor for class jsat.classifiers.bayesian.ODE
Creates a new ODE classifier
ODE(ODE) - Constructor for class jsat.classifiers.bayesian.ODE
Copy constructor
odes - Variable in class jsat.classifiers.bayesian.AODE
 
offer(Integer) - Method in class jsat.utils.IntPriorityQueue
 
offer(int) - Method in class jsat.utils.IntPriorityQueue
 
OkapiBM25 - Class in jsat.text.wordweighting
Implements the Okapi BM25 word weighting scheme.
OkapiBM25() - Constructor for class jsat.text.wordweighting.OkapiBM25
Creates a new Okapi object
OkapiBM25(double, double) - Constructor for class jsat.text.wordweighting.OkapiBM25
Creates a new Okapi object
omega - Static variable in class jsat.text.GreekLetters
 
omicron - Static variable in class jsat.text.GreekLetters
 
OneSampleTest - Interface in jsat.testing.onesample
 
oneVone - Variable in class jsat.classifiers.OneVSOne
Uper-diagonal matrix of classifiers sans the first index since a classifier vs itself is useless.
OneVSAll - Class in jsat.classifiers
This classifier turns any classifier, specifically binary classifiers, into multi-class classifiers.
OneVSAll(Classifier) - Constructor for class jsat.classifiers.OneVSAll
Creates a new One VS All classifier.
OneVSAll(Classifier, boolean) - Constructor for class jsat.classifiers.OneVSAll
Creates a new One VS All classifier.
OneVSOne - Class in jsat.classifiers
A One VS One classifier extends binary decision classifiers into multi-class decision classifiers.
OneVSOne(Classifier) - Constructor for class jsat.classifiers.OneVSOne
Creates a new One-vs-One classifier
OneVSOne(Classifier, boolean) - Constructor for class jsat.classifiers.OneVSOne
Creates a new One-vs-One classifier
OnlineAMM - Class in jsat.classifiers.svm.extended
This is the Online variant of the Adaptive Multi-Hyperplane Machine (AMM) algorithm.
OnlineAMM() - Constructor for class jsat.classifiers.svm.extended.OnlineAMM
Creates a new online AMM learner
OnlineAMM(double) - Constructor for class jsat.classifiers.svm.extended.OnlineAMM
Creates a new online AMM learner
OnlineAMM(double, int) - Constructor for class jsat.classifiers.svm.extended.OnlineAMM
Creates a new online AMM learner
OnlineAMM(OnlineAMM) - Constructor for class jsat.classifiers.svm.extended.OnlineAMM
Copy constructor
OnlineLDAsvi - Class in jsat.text.topicmodel
This class provides an implementation of Latent Dirichlet Allocation for learning a topic model from a set of documents.
OnlineLDAsvi() - Constructor for class jsat.text.topicmodel.OnlineLDAsvi
Creates a new Online LDA learner.
OnlineLDAsvi(int, int, int) - Constructor for class jsat.text.topicmodel.OnlineLDAsvi
Creates a new Online LDA learner that is ready for online updates
OnLineStatistics - Class in jsat.math
This class provides a means of updating summary statistics as each new data point is added.
OnLineStatistics() - Constructor for class jsat.math.OnLineStatistics
Creates a new set of statistical counts with no information
OnLineStatistics(double, double, double, double, double) - Constructor for class jsat.math.OnLineStatistics
Creates a new set of statistical counts with these initial values, and can then be updated in an online fashion
OnLineStatistics(OnLineStatistics) - Constructor for class jsat.math.OnLineStatistics
Copy Constructor
OPTICS - Class in jsat.clustering
An Implementation of the OPTICS algorithm, which is a generalization of DBSCAN.
OPTICS() - Constructor for class jsat.clustering.OPTICS
Creates a new OPTICS cluster object.
OPTICS(int) - Constructor for class jsat.clustering.OPTICS
Creates a new OPTICS cluster object.
OPTICS(DistanceMetric, int) - Constructor for class jsat.clustering.OPTICS
Creates a new OPTICS cluster object.
OPTICS(DistanceMetric, int, double) - Constructor for class jsat.clustering.OPTICS
Creates a new OPTICS cluster object.
OPTICS(OPTICS) - Constructor for class jsat.clustering.OPTICS
 
OPTICS.ExtractionMethod - Enum in jsat.clustering
Enum to indicate which method of extracting clusters should be used on the reachability plot.
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec) - Method in class jsat.math.optimization.BFGS
 
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec, ExecutorService) - Method in class jsat.math.optimization.BFGS
 
optimize(double, int, Function, Function, Vec, List<Vec>, Vec) - Method in class jsat.math.optimization.IterativelyReweightedLeastSquares
 
optimize(double, int, Function, Function, Vec, List<Vec>, Vec, ExecutorService) - Method in class jsat.math.optimization.IterativelyReweightedLeastSquares
 
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec) - Method in class jsat.math.optimization.LBFGS
 
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec, ExecutorService) - Method in class jsat.math.optimization.LBFGS
 
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec) - Method in class jsat.math.optimization.ModifiedOWLQN
 
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec, ExecutorService) - Method in class jsat.math.optimization.ModifiedOWLQN
 
optimize(double, int, Function, Function, Vec, List<Vec>, Vec, ExecutorService) - Method in class jsat.math.optimization.NelderMead
 
optimize(double, int, Function, Function, Vec, List<Vec>, Vec) - Method in class jsat.math.optimization.NelderMead
 
optimize(double, int, Function, List<Vec>) - Method in class jsat.math.optimization.NelderMead
Attempts to find the minimal value of the given function.
optimize(double, int, Function, Function, Vec, List<Vec>, Vec, ExecutorService) - Method in interface jsat.math.optimization.Optimizer
Performs optimization on the given inputs to find the minima of the function.
optimize(double, int, Function, Function, Vec, List<Vec>, Vec) - Method in interface jsat.math.optimization.Optimizer
Performs optimization on the given inputs to find the minima of the function.
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec) - Method in interface jsat.math.optimization.Optimizer2
Attempts to optimize the given function by finding the value of w that will minimize the value returned by f(w), using w = x0 as an initial starting point.
optimize(double, Vec, Vec, Function, FunctionVec, FunctionVec, ExecutorService) - Method in interface jsat.math.optimization.Optimizer2
Attempts to optimize the given function by finding the value of w that will minimize the value returned by f(w), using w = x0 as an initial starting point.
Optimizer - Interface in jsat.math.optimization
This interface provides the contract for a multivariate numerical optimization method.
Optimizer2 - Interface in jsat.math.optimization
This interface defines a contract for multivariate function minimization.

Different optimization methods will use or require different amounts of information.
OrdinaryKriging - Class in jsat.regression
An implementation of Ordinary Kriging with support for a uniform error measurement.
OrdinaryKriging(OrdinaryKriging.Variogram, double, double) - Constructor for class jsat.regression.OrdinaryKriging
Creates a new Ordinary Kriging.
OrdinaryKriging(OrdinaryKriging.Variogram, double) - Constructor for class jsat.regression.OrdinaryKriging
Creates a new Ordinary Kriging
OrdinaryKriging(OrdinaryKriging.Variogram) - Constructor for class jsat.regression.OrdinaryKriging
Creates a new Ordinary Kriging with a small error value
OrdinaryKriging() - Constructor for class jsat.regression.OrdinaryKriging
Creates a new Ordinary Kriging with a small error value using the power variogram.
OrdinaryKriging.PowVariogram - Class in jsat.regression
 
OrdinaryKriging.Variogram - Interface in jsat.regression
 
OS_String - Static variable in class jsat.utils.SystemInfo
 
OSKL - Class in jsat.classifiers.linear.kernelized
Online Sparse Kernel Learning by Sampling and Smooth Losses (OSKL) is an online algorithm for learning sparse kernelized solutions to binary classification problems.
OSKL(KernelTrick, double) - Constructor for class jsat.classifiers.linear.kernelized.OSKL
Creates a new OSKL learner using the LogisticLoss.
OSKL(KernelTrick, double, double, double) - Constructor for class jsat.classifiers.linear.kernelized.OSKL
Creates a new OSKL learner using the LogisticLoss
OSKL(KernelTrick, double, double, double, LossC) - Constructor for class jsat.classifiers.linear.kernelized.OSKL
Creates a new OSKL learner
OSKL(OSKL) - Constructor for class jsat.classifiers.linear.kernelized.OSKL
Copy constructor
OuterProductUpdate(Matrix, Vec, Vec, double) - Static method in class jsat.linear.Matrix
Alters the matrix A such that, A = A + c * x * y'
OuterProductUpdate(Matrix, Vec, Vec, double, ExecutorService) - Static method in class jsat.linear.Matrix
Alters the matrix A such that, A = A + c * x * y'
ownes - Variable in class jsat.clustering.kmeans.KernelKMeans
The weighted number of dataums owned by each mean

P

P(DataPoint) - Method in class jsat.classifiers.boosting.LogitBoost
Returns the probability that a given data point belongs to class 1
PaiceHuskStemmer - Class in jsat.text.stemming
Provides an implementation of the Paice Husk stemmer as described in:
Paice, C.
PaiceHuskStemmer() - Constructor for class jsat.text.stemming.PaiceHuskStemmer
 
Pair<X,Y> - Class in jsat.utils
A simple object to hold a pair of values
Pair(X, Y) - Constructor for class jsat.utils.Pair
 
PairedReturn<T,V> - Class in jsat.utils
Utility class that allows the returning of 2 different objects as one.
PairedReturn(T, V) - Constructor for class jsat.utils.PairedReturn
 
pairwiseDivide(Vec) - Method in class jsat.linear.Vec
Returns a new vector that is the result of dividing each value in this by the value in the same index in b
pairwiseDivide(Vec) - Method in class jsat.linear.VecPaired
 
pairwiseMultiply(Vec) - Method in class jsat.linear.Vec
Returns a new vector that is the result of multiplying each value in this by its corresponding value in b
pairwiseMultiply(Vec) - Method in class jsat.linear.VecPaired
 
PAM - Class in jsat.clustering
 
PAM(DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Constructor for class jsat.clustering.PAM
 
PAM(DistanceMetric, Random) - Constructor for class jsat.clustering.PAM
 
PAM(DistanceMetric) - Constructor for class jsat.clustering.PAM
 
PAM() - Constructor for class jsat.clustering.PAM
 
PAM(PAM) - Constructor for class jsat.clustering.PAM
Copy constructor
ParallelUtils - Class in jsat.utils.concurrent
 
ParallelUtils() - Constructor for class jsat.utils.concurrent.ParallelUtils
 
Parameter - Class in jsat.parameters
This interface provides a programmable manner in which the parameters of an algorithm may be altered and adjusted.
Parameter() - Constructor for class jsat.parameters.Parameter
 
Parameter.ParameterHolder - Annotation Type in jsat.parameters
Adding this annotation to a field tells the Parameter.getParamsFromMethods(java.lang.Object) method to search this object recursively for more parameter get/set pairs.

Placing this annotation on a Collection will cause the search to be done recursively over each item in the collection.
Parameter.WarmParameter - Annotation Type in jsat.parameters
Adding this annotation to a method tells the Parameter.getParamsFromMethods(java.lang.Object) method to consider the Parameter object generated for that method a preferred parameter for warm starting.
Parameterized - Interface in jsat.parameters
An algorithm may be Parameterized, meaning it has one or more parameters that can be tuned or alter the results of the algorithm in question.
parameterOptions() - Method in class jsat.parameters.DecayRateParameter
 
parameterOptions() - Method in class jsat.parameters.KernelFunctionParameter
 
parameterOptions() - Method in class jsat.parameters.ObjectParameter
Returns a list of all possible objects that may be used as a parameter.
parent - Variable in class jsat.utils.UnionFind
 
Pareto - Class in jsat.distributions
 
Pareto() - Constructor for class jsat.distributions.Pareto
 
Pareto(double, double) - Constructor for class jsat.distributions.Pareto
 
parseDouble(CharSequence, int, int) - Static method in class jsat.utils.StringUtils
 
parseInt(CharSequence, int, int, int) - Static method in class jsat.utils.StringUtils
 
parseInt(CharSequence, int, int) - Static method in class jsat.utils.StringUtils
 
pascal(int) - Static method in class jsat.linear.Matrix
Creates a new square matrix that is a pascal matrix.
PassiveAggressive - Class in jsat.classifiers.linear
An implementations of the 3 versions of the Passive Aggressive algorithm for binary classification and regression.
PassiveAggressive() - Constructor for class jsat.classifiers.linear.PassiveAggressive
Creates a new Passive Aggressive learner that does 10 epochs and uses PassiveAggressive.Mode.PA1
PassiveAggressive(int, PassiveAggressive.Mode) - Constructor for class jsat.classifiers.linear.PassiveAggressive
Creates a new Passive Aggressive learner
PassiveAggressive.Mode - Enum in jsat.classifiers.linear
Controls which version of the Passive Aggressive update is used
pathRatio - Variable in class jsat.classifiers.trees.DecisionStump
How much of the data went to each path
paths - Variable in class jsat.classifiers.trees.DecisionTree.Node
 
PCA - Class in jsat.datatransform
Principle Component Analysis is a method that attempts to create a basis of the given space that maintains the variance in the data set while eliminating correlation of the variables.
PCA() - Constructor for class jsat.datatransform.PCA
Creates a new object for performing PCA that stops at 50 principal components.
PCA(DataSet) - Constructor for class jsat.datatransform.PCA
Performs PCA analysis using the given data set, so that transformations may be performed on future data points.
PCA(DataSet, int) - Constructor for class jsat.datatransform.PCA
Performs PCA analysis using the given data set, so that transformations may be performed on future data points.
PCA(int) - Constructor for class jsat.datatransform.PCA
Creates a new object for performing PCA
PCA(int, double) - Constructor for class jsat.datatransform.PCA
Creates a new object for performing PCA
PCA(DataSet, int, double) - Constructor for class jsat.datatransform.PCA
Performs PCA analysis using the given data set, so that transformations may be performed on future data points.
pdf(double...) - Method in class jsat.clustering.EMGaussianMixture
 
pdf(Vec) - Method in class jsat.clustering.EMGaussianMixture
 
pdf(double) - Method in class jsat.distributions.Beta
 
pdf(double) - Method in class jsat.distributions.Cauchy
 
pdf(double) - Method in class jsat.distributions.ChiSquared
 
pdf(double) - Method in class jsat.distributions.ContinuousDistribution
Computes the value of the Probability Density Function (PDF) at the given point
pdf(double) - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
pdf(double) - Method in class jsat.distributions.Exponential
 
pdf(double) - Method in class jsat.distributions.FisherSendor
 
pdf(double) - Method in class jsat.distributions.Gamma
 
pdf(double) - Method in class jsat.distributions.Kolmogorov
 
pdf(double) - Method in class jsat.distributions.Laplace
 
pdf(double) - Method in class jsat.distributions.Levy
 
pdf(double) - Method in class jsat.distributions.Logistic
 
pdf(double) - Method in class jsat.distributions.LogNormal
 
pdf(double) - Method in class jsat.distributions.LogUniform
 
pdf(double) - Method in class jsat.distributions.MaxwellBoltzmann
 
pdf(Vec) - Method in class jsat.distributions.multivariate.Dirichlet
 
pdf(Vec) - Method in class jsat.distributions.multivariate.MetricKDE
 
pdf(double...) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Returns the probability of a given vector from this distribution.
pdf(Vec) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Returns the probability of a given vector from this distribution.
pdf(double...) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
pdf(Vec) - Method in class jsat.distributions.multivariate.NormalM
 
pdf(Vec) - Method in class jsat.distributions.multivariate.ProductKDE
 
pdf(Vec) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
 
pdf(double, double, double) - Static method in class jsat.distributions.Normal
 
pdf(double) - Method in class jsat.distributions.Normal
 
pdf(double) - Method in class jsat.distributions.Pareto
 
pdf(double) - Method in class jsat.distributions.Rayleigh
 
pdf(double) - Method in class jsat.distributions.StudentT
 
pdf(double) - Method in class jsat.distributions.TruncatedDistribution
 
pdf(double) - Method in class jsat.distributions.Uniform
 
pdf(double) - Method in class jsat.distributions.Weibull
 
PearsonDistance - Class in jsat.linear.distancemetrics
A valid distance metric formed from the Pearson Correlation between two vectors.
PearsonDistance() - Constructor for class jsat.linear.distancemetrics.PearsonDistance
Creates a new standard Pearson Distance that does not ignore zero values and anti-correlated values are considered far away.
PearsonDistance(boolean, boolean) - Constructor for class jsat.linear.distancemetrics.PearsonDistance
Creates a new Pearson Distance object
peek() - Method in class jsat.utils.IntPriorityQueue
 
peekMin() - Method in class jsat.utils.FibHeap
 
Pegasos - Class in jsat.classifiers.svm
Implements the linear kernel mini-batch version of the Pegasos SVM classifier.
Pegasos() - Constructor for class jsat.classifiers.svm.Pegasos
Creates a new Pegasos SVM classifier using default values.
Pegasos(int, double, int) - Constructor for class jsat.classifiers.svm.Pegasos
Creates a new Pegasos SVM classifier
Pegasos(Pegasos) - Constructor for class jsat.classifiers.svm.Pegasos
Copy constructor
PegasosK - Class in jsat.classifiers.svm
Implements the kernelized version of the Pegasos algorithm for SVMs.
PegasosK(double, int, KernelTrick) - Constructor for class jsat.classifiers.svm.PegasosK
Creates a new kernelized Pegasos SVM solver
PegasosK(double, int, KernelTrick, SupportVectorLearner.CacheMode) - Constructor for class jsat.classifiers.svm.PegasosK
Creates a new kernelized Pegasos SVM solver
Perceptron - Class in jsat.classifiers.neuralnetwork
The perceptron is a simple algorithm that attempts to find a hyperplane that separates two classes.
Perceptron() - Constructor for class jsat.classifiers.neuralnetwork.Perceptron
Creates a new Perceptron learner
Perceptron(double, int) - Constructor for class jsat.classifiers.neuralnetwork.Perceptron
Creates a new Perceptron learner
phi - Static variable in class jsat.text.GreekLetters
 
pi - Static variable in class jsat.text.GreekLetters
 
PlattCalibration - Class in jsat.classifiers.calibration
Platt Calibration essentially performs logistic regression on the output scores of a model against their class labels.
PlattCalibration(BinaryScoreClassifier, BinaryCalibration.CalibrationMode) - Constructor for class jsat.classifiers.calibration.PlattCalibration
Creates a new Platt Calibration object
PlattSMO - Class in jsat.classifiers.svm
An implementation of SVMs using Platt's Sequential Minimum Optimization (SMO) for both Classification and Regression problems.
PlattSMO() - Constructor for class jsat.classifiers.svm.PlattSMO
Creates a new SVM object with a LinearKernel that uses no cache mode.
PlattSMO(KernelTrick) - Constructor for class jsat.classifiers.svm.PlattSMO
Creates a new SVM object that uses no cache mode.
pmf(int) - Method in class jsat.distributions.discrete.Binomial
 
pmf(int) - Method in class jsat.distributions.discrete.DiscreteDistribution
 
pmf(int) - Method in class jsat.distributions.discrete.Poisson
 
pmf(int) - Method in class jsat.distributions.discrete.UniformDiscrete
 
pNorm(double) - Method in class jsat.linear.ConstantVector
 
pNorm(double) - Method in class jsat.linear.DenseVector
 
pNorm(double) - Method in class jsat.linear.ScaledVector
 
pNorm(double) - Method in class jsat.linear.ShiftedVec
 
pNorm(double) - Method in class jsat.linear.SparseVector
 
pNorm(double) - Method in class jsat.linear.Vec
Returns the p-norm of this vector.
pNorm(double) - Method in class jsat.linear.VecPaired
 
pNorm(double) - Method in class jsat.linear.VecWithNorm
 
pNormDist(double, Vec) - Method in class jsat.linear.DenseVector
 
pNormDist(double, Vec) - Method in class jsat.linear.SparseVector
 
pNormDist(double, Vec) - Method in class jsat.linear.Vec
Returns the p-norm distance between this and another vector y.
pNormDist(double, Vec) - Method in class jsat.linear.VecPaired
 
PNormNormalization - Class in jsat.datatransform
PNormNormalization transformation performs normalizations of a vector x by one its p-norms where p is in (0, Infinity)
PNormNormalization() - Constructor for class jsat.datatransform.PNormNormalization
Creates a new object that normalizes based on the 2-norm
PNormNormalization(double) - Constructor for class jsat.datatransform.PNormNormalization
Creates a new p norm
PoisonRunnable - Class in jsat.utils
A helper class for using the reader / writer model to implement parallel algorithms.
PoisonRunnable(Runnable) - Constructor for class jsat.utils.PoisonRunnable
Creates a new PoisonRunnable that will run the given runnable when it is called.
PoisonRunnable(CountDownLatch) - Constructor for class jsat.utils.PoisonRunnable
Creates a new PoisonRunnable that will call the CountDownLatch.countDown() method on the given latch when its run method is finally called.
PoisonRunnable(CyclicBarrier) - Constructor for class jsat.utils.PoisonRunnable
Creates a new PoisonRunnable that will call the CyclicBarrier.await() method of the given barrier when its run method is finally called.
PoisonRunnable() - Constructor for class jsat.utils.PoisonRunnable
Creates a new PoisonRunnable that will do nothing when its run method is called.
Poisson - Class in jsat.distributions.discrete
The Poisson distribution is for the number of events occurring in a fixed amount of time, where the event has an average rate and all other occurrences are independent.
Poisson() - Constructor for class jsat.distributions.discrete.Poisson
Creates a new Poisson distribution with λ = 1
Poisson(double) - Constructor for class jsat.distributions.discrete.Poisson
Creates a new Poisson distribution
poll() - Method in class jsat.utils.IntPriorityQueue
 
Poly2Vec - Class in jsat.linear
This class is used to create an implicit representation of the degree 2 polynomial of an input vector, with an implicit bias term added so that the original vector values are present in the implicit vector.
Poly2Vec(Vec) - Constructor for class jsat.linear.Poly2Vec
 
PolynomialKernel - Class in jsat.distributions.kernels
Provides a Polynomial Kernel of the form
k(x,y) = (alpha * x.y + c)^d
PolynomialKernel(double, double, double) - Constructor for class jsat.distributions.kernels.PolynomialKernel
Creates a new polynomial kernel
PolynomialKernel(double) - Constructor for class jsat.distributions.kernels.PolynomialKernel
Defaults alpha = 1 and c = 1
PolynomialTransform - Class in jsat.datatransform
A transform for applying a polynomial transformation on the data set.
PolynomialTransform(int) - Constructor for class jsat.datatransform.PolynomialTransform
Creates a new polynomial transform of the given degree
PorterStemmer - Class in jsat.text.stemming
Implements Porter's stemming algorithm http://tartarus.org/~martin/PorterStemmer/def.txt .
PorterStemmer() - Constructor for class jsat.text.stemming.PorterStemmer
 
pow(double, double) - Static method in class jsat.math.FastMath
Computes ab.
pow2(int) - Static method in class jsat.math.FastMath
Computes 2x exactly be exploiting the IEEE format
pow2(double) - Static method in class jsat.math.FastMath
Computes 2x.
The results are generally accurate to an relative error of 10-4, but can be as accurate as 10-10
PowerDecay - Class in jsat.math.decayrates
Decays an input by power of the amount of time that has occurred, the max time being irrelevant.
PowerDecay(double, double) - Constructor for class jsat.math.decayrates.PowerDecay
Creates a new Power decay rate
PowerDecay() - Constructor for class jsat.math.decayrates.PowerDecay
Creates a new Power Decay rate
PowVariogram() - Constructor for class jsat.regression.OrdinaryKriging.PowVariogram
 
PowVariogram(double) - Constructor for class jsat.regression.OrdinaryKriging.PowVariogram
 
Precision - Class in jsat.classifiers.evaluation
Evaluates a classifier based on the Precision, where the class of index 0 is considered the positive class.
Precision() - Constructor for class jsat.classifiers.evaluation.Precision
 
Precision(Precision) - Constructor for class jsat.classifiers.evaluation.Precision
 
predicting - Variable in class jsat.classifiers.bayesian.AODE
 
predicting - Variable in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
The class we are predicting
predicting - Variable in class jsat.classifiers.boosting.AdaBoostM1
 
predicting - Variable in class jsat.classifiers.boosting.EmphasisBoost
 
predicting - Variable in class jsat.classifiers.boosting.ModestAdaBoost
 
predicting - Variable in class jsat.classifiers.ClassificationDataSet
The categories for the predicted value
predicting - Variable in class jsat.classifiers.OneVSOne
 
predictions - Variable in class jsat.regression.evaluation.TotalHistoryRegressionScore
List of the predict values for each target
predTargets - Variable in class jsat.classifiers.bayesian.ODE
The number of possible values in the target class
preferredLowToHigh() - Method in class jsat.parameters.Parameter
This value is meaningless if Parameter.isWarmParameter() is false , and by default returns false.
prepare(CategoricalData) - Method in class jsat.classifiers.evaluation.Accuracy
 
prepare(CategoricalData) - Method in class jsat.classifiers.evaluation.AUC
 
prepare(CategoricalData) - Method in interface jsat.classifiers.evaluation.ClassificationScore
Prepares this score to predict on the given input
prepare(CategoricalData) - Method in class jsat.classifiers.evaluation.Kappa
 
prepare(CategoricalData) - Method in class jsat.classifiers.evaluation.LogLoss
 
prepare(CategoricalData) - Method in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
prepare() - Method in class jsat.regression.evaluation.MeanAbsoluteError
 
prepare() - Method in class jsat.regression.evaluation.MeanSquaredError
 
prepare() - Method in interface jsat.regression.evaluation.RegressionScore
 
prepare() - Method in class jsat.regression.evaluation.TotalHistoryRegressionScore
 
prettyPrintClassificationScores() - Method in class jsat.classifiers.ClassificationModelEvaluation
Prints out the classification information in a convenient format.
prettyPrintConfusionMatrix() - Method in class jsat.classifiers.ClassificationModelEvaluation
Assuming that we are on the start of a new line, the confusion matrix will be pretty printed to System.out
prettyPrintRegressionScores() - Method in class jsat.regression.RegressionModelEvaluation
Prints out the classification information in a convenient format.
PriorClassifier - Class in jsat.classifiers
A Naive classifier that simply returns the prior probabilities as the classification decision.
PriorClassifier() - Constructor for class jsat.classifiers.PriorClassifier
Creates a new PriorClassifeir
PriorClassifier(CategoricalResults) - Constructor for class jsat.classifiers.PriorClassifier
Creates a new Prior Classifier that is given the results it should be returning
PriorityHAC - Class in jsat.clustering.hierarchical
 
PriorityHAC(UpdatableClusterDissimilarity) - Constructor for class jsat.clustering.hierarchical.PriorityHAC
 
PriorityHAC(PriorityHAC) - Constructor for class jsat.clustering.hierarchical.PriorityHAC
Copy constructor
priors - Variable in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
The prior probabilities of each class value
priors - Variable in class jsat.classifiers.bayesian.ODE
The prior probability of each combination of target and dependent variable
priorSum - Variable in class jsat.classifiers.bayesian.ODE
 
ProbailityMatch<T> - Class in jsat.utils
Class allows the arbitrary association of some object type with a probability.
ProbailityMatch(double, T) - Constructor for class jsat.utils.ProbailityMatch
 
process(Vec, Vec) - Method in class jsat.lossfunctions.HingeLoss
 
process(Vec, Vec) - Method in interface jsat.lossfunctions.LossMC
Given the vector of raw outputs for each class, transform it into a new vector.
process(Vec, Vec) - Method in class jsat.lossfunctions.SoftmaxLoss
 
ProductKDE - Class in jsat.distributions.multivariate
The Product Kernel Density Estimator is a generalization of the KernelDensityEstimator to the multivariate case.
ProductKDE() - Constructor for class jsat.distributions.multivariate.ProductKDE
Creates a new KDE that uses the EpanechnikovKF kernel.
ProductKDE(KernelFunction) - Constructor for class jsat.distributions.multivariate.ProductKDE
Creates a new KDE that uses the specified kernel
Projectron - Class in jsat.classifiers.linear.kernelized
An implementation of the Projectron and Projectrion++ algorithms.
Projectron(KernelTrick) - Constructor for class jsat.classifiers.linear.kernelized.Projectron
Creates a new Projectron++ learner
Projectron(KernelTrick, double) - Constructor for class jsat.classifiers.linear.kernelized.Projectron
Creates a new Projectron++ learner
Projectron(KernelTrick, double, boolean) - Constructor for class jsat.classifiers.linear.kernelized.Projectron
Creates a new Projectron learner
Projectron(Projectron) - Constructor for class jsat.classifiers.linear.kernelized.Projectron
Copy constructor
prune(TreeNodeVisitor, TreePruner.PruningMethod, ClassificationDataSet) - Static method in class jsat.classifiers.trees.TreePruner
Performs pruning starting from the root node of a tree
prune(TreeNodeVisitor, TreePruner.PruningMethod, List<DataPointPair<Integer>>) - Static method in class jsat.classifiers.trees.TreePruner
Performs pruning starting from the root node of a tree
psi - Static variable in class jsat.text.GreekLetters
 
pt(double, double, double, double, double) - Method in enum jsat.classifiers.linear.kernelized.CSKLR.UpdateMode
Returns the Bernoulli trial probability variable
PukKernel - Class in jsat.distributions.kernels
The PUK kernel is an alternative to the RBF Kernel.
PukKernel(double, double) - Constructor for class jsat.distributions.kernels.PukKernel
Creates a new PUK Kernel
put(K, V) - Method in class jsat.utils.concurrent.ConcurrentCacheLRU
 
put(Integer, Double) - Method in class jsat.utils.IntDoubleMap
 
put(int, double) - Method in class jsat.utils.IntDoubleMap
 
put(Integer, Double) - Method in class jsat.utils.IntDoubleMapArray
 
put(int, double) - Method in class jsat.utils.IntDoubleMapArray
 
put(Long, Double) - Method in class jsat.utils.LongDoubleMap
 
put(long, double) - Method in class jsat.utils.LongDoubleMap
 
putIfAbsentAndGet(K, V) - Method in class jsat.utils.concurrent.ConcurrentCacheLRU
 
pValue() - Method in class jsat.testing.onesample.TTest
 
pValue() - Method in class jsat.testing.onesample.ZTest
 
pValue() - Method in interface jsat.testing.StatisticTest
 

Q

qr() - Method in class jsat.linear.DenseMatrix
 
qr(ExecutorService) - Method in class jsat.linear.DenseMatrix
 
qr() - Method in class jsat.linear.GenericMatrix
 
qr(ExecutorService) - Method in class jsat.linear.GenericMatrix
 
qr() - Method in class jsat.linear.Matrix
 
qr(ExecutorService) - Method in class jsat.linear.Matrix
 
qr() - Method in class jsat.linear.SparseMatrix
 
qr(ExecutorService) - Method in class jsat.linear.SparseMatrix
 
QRDecomposition - Class in jsat.linear
 
QRDecomposition(Matrix, Matrix) - Constructor for class jsat.linear.QRDecomposition
 
QRDecomposition(Matrix) - Constructor for class jsat.linear.QRDecomposition
 
QRDecomposition(Matrix, ExecutorService) - Constructor for class jsat.linear.QRDecomposition
 
query(int, DataPointPair<Integer>) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
Queries the CPT for the probability that the class value of targetClas would occur with the given DataPointPair.
query(int, int, int[]) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
Queries the CPT for the probability of the target class occurring with the specified value given the class values of the other attributes
QuickSort - Class in jsat.utils
Provides implementations of quicksort.

R

rand - Variable in class jsat.clustering.kmeans.KMeans
 
rand - Variable in class jsat.clustering.PAM
 
random(int, int, Random) - Static method in class jsat.linear.Matrix
Creates a new dense matrix filled with random values from Random.nextDouble()
random(int) - Static method in class jsat.linear.Vec
Creates a dense vector full of random values in the range [0, 1]
random(int, Random) - Static method in class jsat.linear.Vec
Creates a dense vector full of random values in the range [0, 1]
RandomBallCover<V extends Vec> - Class in jsat.linear.vectorcollection
An implementation of the exact search for the Random Ball Cover algorithm.
RandomBallCover(List<V>, DistanceMetric, ExecutorService) - Constructor for class jsat.linear.vectorcollection.RandomBallCover
Creates a new Random Ball Cover
RandomBallCover(List<V>, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.RandomBallCover
Creates a new Random Ball Cover
RandomBallCover(DistanceMetric) - Constructor for class jsat.linear.vectorcollection.RandomBallCover
 
RandomBallCover.RandomBallCoverFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
RandomBallCoverFactory() - Constructor for class jsat.linear.vectorcollection.RandomBallCover.RandomBallCoverFactory
 
RandomBallCoverOneShot<V extends Vec> - Class in jsat.linear.vectorcollection
An implementation of the on shot search for the Random Ball Cover algorithm.
RandomBallCoverOneShot(List<V>, DistanceMetric, int, ExecutorService) - Constructor for class jsat.linear.vectorcollection.RandomBallCoverOneShot
Creates a new one-shot version of the Random Cover Ball.
RandomBallCoverOneShot(List<V>, DistanceMetric, ExecutorService) - Constructor for class jsat.linear.vectorcollection.RandomBallCoverOneShot
Creates a new one-shot version of the Random Cover Ball.
RandomBallCoverOneShot(List<V>, DistanceMetric, int) - Constructor for class jsat.linear.vectorcollection.RandomBallCoverOneShot
Creates a new one-shot version of the Random Cover Ball.
RandomBallCoverOneShot(List<V>, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.RandomBallCoverOneShot
Creates a new one-shot version of the Random Cover Ball.
RandomBallCoverOneShot.RandomBallCoverOneShotFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
RandomBallCoverOneShotFactory() - Constructor for class jsat.linear.vectorcollection.RandomBallCoverOneShot.RandomBallCoverOneShotFactory
 
RandomDecisionTree - Class in jsat.classifiers.trees
An extension of Decision Trees, it ignores the given set of features to use- and selects a new random subset of features at each node for use.
RandomDecisionTree() - Constructor for class jsat.classifiers.trees.RandomDecisionTree
 
RandomDecisionTree(int) - Constructor for class jsat.classifiers.trees.RandomDecisionTree
Creates a new Random Decision Tree
RandomDecisionTree(int, int, int, TreePruner.PruningMethod, double) - Constructor for class jsat.classifiers.trees.RandomDecisionTree
Creates a new Random Decision Tree
RandomDecisionTree(RandomDecisionTree) - Constructor for class jsat.classifiers.trees.RandomDecisionTree
Copy constructor
RandomForest - Class in jsat.classifiers.trees
Random Forest is an extension of Bagging that is applied only to DecisionTrees.
RandomForest() - Constructor for class jsat.classifiers.trees.RandomForest
 
RandomForest(int) - Constructor for class jsat.classifiers.trees.RandomForest
 
RandomMatrix - Class in jsat.linear
Stores a Matrix full of random values in constant O(1) space by re-computing all matrix values on the fly as need.
RandomMatrix(int, int) - Constructor for class jsat.linear.RandomMatrix
Creates a new random matrix object
RandomMatrix(int, int, long) - Constructor for class jsat.linear.RandomMatrix
Creates a new random matrix object
RandomMatrix(RandomMatrix) - Constructor for class jsat.linear.RandomMatrix
Copy constructor
RandomProjectionLSH<V extends Vec> - Class in jsat.linear.vectorcollection.lsh
An implementation of Locality Sensitive Hashing for the CosineDistance using random projections.
RandomProjectionLSH(List<V>, int, boolean) - Constructor for class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
Creates a new Random Projection LSH object that uses a full matrix of normally distributed values.
RandomProjectionLSH(List<V>, int, int) - Constructor for class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
Creates a new Random Projection LSH object that uses a pool of normally distributed values to approximate a full matrix with considerably less memory storage.
RandomProjectionLSH(RandomProjectionLSH<V>) - Constructor for class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
Copy Constructor
RandomProjectionLSH.RandomProjectionLSHFactory<V extends Vec> - Class in jsat.linear.vectorcollection.lsh
 
RandomProjectionLSHFactory(int, boolean) - Constructor for class jsat.linear.vectorcollection.lsh.RandomProjectionLSH.RandomProjectionLSHFactory
Creates a new Random Projection LSH factory that uses a full matrix of normally distributed values.
RandomProjectionLSHFactory(int, int) - Constructor for class jsat.linear.vectorcollection.lsh.RandomProjectionLSH.RandomProjectionLSHFactory
Creates a new Random Projection LSH factory that uses a pool of normally distributed values to approximate a full matrix with considerably less memory storage.
RandomProjectionLSHFactory(RandomProjectionLSH.RandomProjectionLSHFactory<V>) - Constructor for class jsat.linear.vectorcollection.lsh.RandomProjectionLSH.RandomProjectionLSHFactory
Copy constructor
randomSample(List<T>, List<T>, int, Random) - Static method in class jsat.utils.ListUtils
Obtains a random sample without replacement from a source list and places it in the destination list.
randomSample(Collection<T>, Collection<T>, int, Random) - Static method in class jsat.utils.ListUtils
Obtains a random sample without replacement from a source collection and places it in the destination collection.
randomSample(List<T>, List<T>, int) - Static method in class jsat.utils.ListUtils
Obtains a random sample without replacement from a source list and places it in the destination list.
RandomSearch - Class in jsat.parameters
Random Search is a simple method for tuning the parameters of a classification or regression algorithm.
RandomSearch(Regressor, int) - Constructor for class jsat.parameters.RandomSearch
Creates a new GridSearch to tune the specified parameters of a regression model.
RandomSearch(Classifier, int) - Constructor for class jsat.parameters.RandomSearch
Creates a new GridSearch to tune the specified parameters of a classification model.
RandomSearch(RandomSearch) - Constructor for class jsat.parameters.RandomSearch
Copy constructor
randomSplit(Random, double...) - Method in class jsat.DataSet
Splits the dataset randomly into proportionally sized partitions.
randomSplit(double...) - Method in class jsat.DataSet
Splits the dataset randomly into proportionally sized partitions.
RandomUtil - Class in jsat.utils.random
This class provides assorted utilities related to random number generation and use.
RandomVector - Class in jsat.linear
Stores a Vector full of random values in constant O(1) space by re-computing all matrix values on the fly as need.
RandomVector(int) - Constructor for class jsat.linear.RandomVector
Creates a new Random Vector object
RandomVector(int, long) - Constructor for class jsat.linear.RandomVector
Creates a new Random Vector object
RandomVector(RandomVector) - Constructor for class jsat.linear.RandomVector
Copy constructor
rank - Variable in class jsat.utils.UnionFind
Really the depth of the tree, but terminology usually is rank
RANSAC - Class in jsat.regression
RANSAC is a randomized meta algorithm that is useful for fitting a model to a data set that has a large amount of outliers that do not represent the true distribution well.
RANSAC(Regressor, int, int, int, double) - Constructor for class jsat.regression.RANSAC
Creates a new RANSAC training object.
rate(double, double, double) - Method in interface jsat.math.decayrates.DecayRate
Decays the initial value over time.
rate(double, double) - Method in interface jsat.math.decayrates.DecayRate
Decays the initial value over time.
rate(double, double, double) - Method in class jsat.math.decayrates.ExponetialDecay
 
rate(double, double) - Method in class jsat.math.decayrates.ExponetialDecay
 
rate(double, double, double) - Method in class jsat.math.decayrates.InverseDecay
 
rate(double, double) - Method in class jsat.math.decayrates.InverseDecay
 
rate(double, double, double) - Method in class jsat.math.decayrates.LinearDecay
 
rate(double, double) - Method in class jsat.math.decayrates.LinearDecay
 
rate(double, double, double) - Method in class jsat.math.decayrates.NoDecay
 
rate(double, double) - Method in class jsat.math.decayrates.NoDecay
 
rate(double, double, double) - Method in class jsat.math.decayrates.PowerDecay
 
rate(double, double) - Method in class jsat.math.decayrates.PowerDecay
 
RationalQuadraticKernel - Class in jsat.distributions.kernels
Provides an implementation of the Rational Quadratic Kernel, which is of the form:
k(x, y) = 1 - ||x-y||2 / (||x-y||2 + c)
RationalQuadraticKernel(double) - Constructor for class jsat.distributions.kernels.RationalQuadraticKernel
Creates a new RQ Kernel
Rayleigh - Class in jsat.distributions
 
Rayleigh(double) - Constructor for class jsat.distributions.Rayleigh
 
RBFKernel - Class in jsat.distributions.kernels
Provides a kernel for the Radial Basis Function, which is of the form
k(x, y) = exp(-||x-y||2/(2*σ2))
RBFKernel() - Constructor for class jsat.distributions.kernels.RBFKernel
Creates a new RBF kernel with σ = 1
RBFKernel(double) - Constructor for class jsat.distributions.kernels.RBFKernel
Creates a new RBF kernel
RBFNet - Class in jsat.classifiers.neuralnetwork
This provides a highly configurable implementation of a Radial Basis Function Neural Network.
RBFNet() - Constructor for class jsat.classifiers.neuralnetwork.RBFNet
Creates a new RBF Network suitable for binary classification or regression and uses 100 hidden nodes.
RBFNet(int) - Constructor for class jsat.classifiers.neuralnetwork.RBFNet
Creates a new RBF Network suitable for binary classification or regression.
RBFNet(int, RBFNet.Phase1Learner, RBFNet.Phase2Learner, double, int, DistanceMetric, Classifier) - Constructor for class jsat.classifiers.neuralnetwork.RBFNet
Creates a new RBF Network for classification tasks.
RBFNet(int, RBFNet.Phase1Learner, RBFNet.Phase2Learner, double, int, DistanceMetric, Regressor) - Constructor for class jsat.classifiers.neuralnetwork.RBFNet
Creates a new RBF Network for regression tasks.
RBFNet(RBFNet) - Constructor for class jsat.classifiers.neuralnetwork.RBFNet
Copy constructor
RBFNet.Phase1Learner - Enum in jsat.classifiers.neuralnetwork
The first phase of learning a RBF Neural Network is to determine the neuron locations.
RBFNet.Phase2Learner - Enum in jsat.classifiers.neuralnetwork
The second phase of learning a RBF Neural Network is to determine how the neurons are activated to produce the output of the hidden layer.
read(Path, int, Set<Integer>) - Static method in class jsat.io.CSV
Reads in the given CSV dataset as a simple CSV file
read(Reader, int, Set<Integer>) - Static method in class jsat.io.CSV
Reads in the given CSV dataset as a simple CSV file
read(Path, char, int, char, Set<Integer>) - Static method in class jsat.io.CSV
Reads in the given CSV dataset as a simple CSV file
read(Reader, char, int, char, Set<Integer>) - Static method in class jsat.io.CSV
Reads in the given CSV dataset as a simple CSV file
readC(int, Path, int, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a classification dataset.
readC(int, Reader, int, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a classification dataset.
readC(int, Reader, char, int, char, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a classification dataset.
readC(int, Path, char, int, char, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a classification dataset.
readFP(DataInputStream) - Method in enum jsat.io.JSATData.FloatStorageMethod
 
readR(int, Path, int, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a regression dataset.
readR(int, Reader, int, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a regression dataset.
readR(int, Path, char, int, char, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a regression dataset.
readR(int, Reader, char, int, char, Set<Integer>) - Static method in class jsat.io.CSV
Reads in a CSV dataset as a regression dataset.
Recall - Class in jsat.classifiers.evaluation
Evaluates a classifier based on the Recall rate, where the class of index 0 is considered the positive class.
Recall() - Constructor for class jsat.classifiers.evaluation.Recall
Creates a new Recall evaluator
Recall(Recall) - Constructor for class jsat.classifiers.evaluation.Recall
Copy constructor
regres(Vec, Vec) - Static method in class jsat.math.SimpleLinearRegression
Performs a Simple Linear Regression on the data set, calculating the best fit a and b such that y = a + b * x

regress(DataPoint) - Method in class jsat.classifiers.boosting.Bagging
 
regress(DataPoint) - Method in class jsat.classifiers.boosting.Stacking
 
regress(DataPoint) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
regress(DataPoint) - Method in class jsat.classifiers.boosting.Wagging
 
regress(DataPoint) - Method in class jsat.classifiers.knn.LWL
 
regress(DataPoint) - Method in class jsat.classifiers.knn.NearestNeighbour
 
regress(DataPoint) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
regress(DataPoint) - Method in class jsat.classifiers.linear.LinearBatch
 
regress(DataPoint) - Method in class jsat.classifiers.linear.LinearL1SCD
 
regress(DataPoint) - Method in class jsat.classifiers.linear.LinearSGD
 
regress(DataPoint) - Method in class jsat.classifiers.linear.PassiveAggressive
 
regress(DataPoint) - Method in class jsat.classifiers.linear.SCD
 
regress(DataPoint) - Method in class jsat.classifiers.linear.SMIDAS
 
regress(DataPoint) - Method in class jsat.classifiers.linear.STGD
 
regress(double) - Method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
The output value result for a regression problem
regress(DataPoint) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
regress(DataPoint) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
regress(DataPoint) - Method in class jsat.classifiers.svm.DCD
 
regress(DataPoint) - Method in class jsat.classifiers.svm.DCDs
 
regress(DataPoint) - Method in class jsat.classifiers.svm.LSSVM
 
regress(DataPoint) - Method in class jsat.classifiers.svm.PlattSMO
 
regress(DataPoint) - Method in class jsat.classifiers.trees.DecisionStump
 
regress(DataPoint) - Method in class jsat.classifiers.trees.DecisionTree
 
regress(DataPoint) - Method in class jsat.classifiers.trees.ERTrees
 
regress(DataPoint) - Method in class jsat.classifiers.trees.ExtraTree
 
regress(DataPoint) - Method in class jsat.classifiers.trees.RandomForest
 
regress(DataPoint) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Performs regression on the given data point by following it down the tree until it finds the correct terminal node.
regress(DataPoint) - Method in class jsat.datatransform.DataModelPipeline
 
regress(double) - Static method in class jsat.lossfunctions.AbsoluteLoss
 
regress(double) - Static method in class jsat.lossfunctions.HuberLoss
 
regress(double) - Static method in class jsat.lossfunctions.SquaredLoss
 
regress(DataPoint) - Method in class jsat.parameters.ModelSearch
 
regress(DataPoint) - Method in class jsat.regression.AveragedRegressor
 
regress(DataPoint) - Method in class jsat.regression.KernelRidgeRegression
 
regress(DataPoint) - Method in class jsat.regression.KernelRLS
 
regress(DataPoint) - Method in class jsat.regression.LogisticRegression
 
regress(DataPoint) - Method in class jsat.regression.MultipleLinearRegression
 
regress(DataPoint) - Method in class jsat.regression.NadarayaWatson
 
regress(DataPoint) - Method in class jsat.regression.OrdinaryKriging
 
regress(DataPoint) - Method in class jsat.regression.RANSAC
 
regress(DataPoint) - Method in interface jsat.regression.Regressor
 
regress(DataPoint) - Method in class jsat.regression.RidgeRegression
 
regress(DataPoint) - Method in class jsat.regression.StochasticGradientBoosting
 
regress(DataPoint) - Method in class jsat.regression.StochasticRidgeRegression
 
RegressionDataSet - Class in jsat.regression
A RegressionDataSet is a data set specifically for the task of performing regression.
RegressionDataSet(int, CategoricalData[]) - Constructor for class jsat.regression.RegressionDataSet
Creates a new empty data set for regression
RegressionDataSet(List<DataPoint>, int) - Constructor for class jsat.regression.RegressionDataSet
Creates a new data set for the given list of data points.
RegressionDataSet(List<DataPointPair<Double>>) - Constructor for class jsat.regression.RegressionDataSet
Creates a new regression data set by copying all the data points in the given list.
RegressionModelEvaluation - Class in jsat.regression
Provides a mechanism to quickly evaluate a regression model on a data set.
RegressionModelEvaluation(Regressor, RegressionDataSet, ExecutorService) - Constructor for class jsat.regression.RegressionModelEvaluation
Creates a new RegressionModelEvaluation that will perform parallel training.
RegressionModelEvaluation(Regressor, RegressionDataSet) - Constructor for class jsat.regression.RegressionModelEvaluation
Creates a new RegressionModelEvaluation that will perform serial training
RegressionScore - Interface in jsat.regression.evaluation
This interface defines the contract for evaluating or "scoring" the results on a regression problem.
regressionTargetScore - Variable in class jsat.parameters.ModelSearch
 
Regressor - Interface in jsat.regression
 
RegressorToClassifier - Class in jsat.classifiers
This meta algorithm wraps a Regressor to perform binary classification.
RegressorToClassifier(Regressor) - Constructor for class jsat.classifiers.RegressorToClassifier
Creates a new Binary Classifier by using the given regressor
regularization - Variable in class jsat.datatransform.WhitenedPCA
Regularization parameter
RelativeAbsoluteError - Class in jsat.regression.evaluation
Uses the Sum of Absolute Errors divided by the sum of the absolute value of the true values subtracted from their mean.
RelativeAbsoluteError() - Constructor for class jsat.regression.evaluation.RelativeAbsoluteError
Creates a new Relative Absolute Error evaluator
RelativeAbsoluteError(RelativeAbsoluteError) - Constructor for class jsat.regression.evaluation.RelativeAbsoluteError
Copy constructor
RelativeSquaredError - Class in jsat.regression.evaluation
Uses the Sum of Squared Errors divided by the sum of the squared true values subtracted from their mean.
RelativeSquaredError() - Constructor for class jsat.regression.evaluation.RelativeSquaredError
Creates a new Relative Squared Error object
RelativeSquaredError(RelativeSquaredError) - Constructor for class jsat.regression.evaluation.RelativeSquaredError
Copy constructor
reliability(double) - Method in class jsat.distributions.Weibull
 
ReliefF - Class in jsat.datatransform.featureselection
Provides an implementation of the ReliefF algorithm for feature importance computing.
ReliefF(int) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
ReliefF(int, int, int, DistanceMetric) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
ReliefF(ClassificationDataSet, int, int, int, DistanceMetric) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
ReliefF(ClassificationDataSet, int, int, int, DistanceMetric, ExecutorService) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
ReliefF(ClassificationDataSet, int, int, int, DistanceMetric, VectorCollectionFactory<Vec>) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
ReliefF(ReliefF) - Constructor for class jsat.datatransform.featureselection.ReliefF
copy constructor
ReliefF(int, int, int, DistanceMetric, VectorCollectionFactory<Vec>) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
ReliefF(ClassificationDataSet, int, int, int, DistanceMetric, VectorCollectionFactory<Vec>, ExecutorService) - Constructor for class jsat.datatransform.featureselection.ReliefF
Creates a new ReliefF object to measure the importance of the variables with respect to a classification task.
reLnBn(int) - Static method in class jsat.math.SpecialMath
Computes the real part of the natural logarithm of the Bernoulli numbers.
ReLU - Class in jsat.classifiers.neuralnetwork.activations
This Activation Layer is for Rectified Linear Units.
ReLU() - Constructor for class jsat.classifiers.neuralnetwork.activations.ReLU
 
remove(int) - Method in class jsat.linear.vectorcollection.VectorArray
 
remove(double, double) - Method in class jsat.math.OnLineStatistics
Effectively removes a sample with the given value and weight from the total.
remove(OnLineStatistics, OnLineStatistics) - Static method in class jsat.math.OnLineStatistics
Computes a new set of statistics that is the equivalent of having removed all observations in B from A.
remove(OnLineStatistics) - Method in class jsat.math.OnLineStatistics
Removes from this set of statistics the observations that where collected in B.
NOTE: removing statistics is not as numerically stable.
remove(int) - Method in class jsat.utils.DoubleList
 
remove(Object) - Method in class jsat.utils.IntDoubleMap
 
remove(int) - Method in class jsat.utils.IntDoubleMap
 
remove(Object) - Method in class jsat.utils.IntDoubleMapArray
 
remove(int) - Method in class jsat.utils.IntDoubleMapArray
 
remove(int) - Method in class jsat.utils.IntList
 
remove(Object) - Method in class jsat.utils.IntPriorityQueue
 
remove(Object) - Method in class jsat.utils.IntSet
 
remove(int) - Method in class jsat.utils.IntSet
 
remove(Object) - Method in class jsat.utils.IntSetFixedSize
 
remove(int) - Method in class jsat.utils.IntSetFixedSize
Removes the specified integer from the set
remove(Object) - Method in class jsat.utils.LongDoubleMap
 
remove(long) - Method in class jsat.utils.LongDoubleMap
 
remove(int) - Method in class jsat.utils.LongList
 
remove(int) - Method in class jsat.utils.SimpleList
 
RemoveAttributeTransform - Class in jsat.datatransform
This Data Transform allows the complete removal of specific features from the data set.
RemoveAttributeTransform() - Constructor for class jsat.datatransform.RemoveAttributeTransform
Empty constructor that may be used by extending classes.
RemoveAttributeTransform(Set<Integer>, Set<Integer>) - Constructor for class jsat.datatransform.RemoveAttributeTransform
Creates a new transform for removing specified features from a data set.
RemoveAttributeTransform(DataSet, Set<Integer>, Set<Integer>) - Constructor for class jsat.datatransform.RemoveAttributeTransform
Creates a new transform for removing specified features from a data set
RemoveAttributeTransform(RemoveAttributeTransform) - Constructor for class jsat.datatransform.RemoveAttributeTransform
Copy constructor
removeD(int) - Method in class jsat.utils.DoubleList
Operates exactly as DoubleList.remove(int)
removeEdge(N, N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Removes a directed edge from the network connecting a to b.
removeFeature(int, int, Set<Integer>, Set<Integer>) - Static method in class jsat.datatransform.featureselection.SFS
 
removeHeapNode(int) - Method in class jsat.utils.IntPriorityQueue
Removes the node specified from the heap
removeIndex(int) - Method in class jsat.distributions.kernels.KernelPoint
Removes the vec, alpha, and kernel cache associate with the given index
removeMin() - Method in class jsat.utils.FibHeap
 
removeNode(N) - Method in class jsat.classifiers.bayesian.graphicalmodel.DirectedGraph
Removes the specified node from the graph.
removePoint(DataPoint, int) - Method in class jsat.classifiers.trees.ImpurityScore
Removes one point from the impurity score
removePoint(double, int) - Method in class jsat.classifiers.trees.ImpurityScore
Removes one point from the impurity score
repeats - Variable in class jsat.clustering.PAM
 
replaceNumericFeatures(List<Vec>) - Method in class jsat.DataSet
This method will replace every numeric feature in this dataset with a Vec object from the given list.
requiresRetrain() - Method in class jsat.parameters.Parameter
Some variables of a learning method may be adjustable without having to re-train the whole data set.
reScale - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
Whether or not to perform feature rescaling
reset() - Method in class jsat.utils.IndexTable
Resets the index table so that the returned indices are in linear order, meaning the original input would be returned in its original order instead of sorted order.
resetCounter() - Method in class jsat.linear.distancemetrics.DistanceCounter
Resets the distance counter calls to zero.
response(double) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet.ActivationFunction
Computes the response of the response of this activation function on the given input value
result(int) - Method in class jsat.classifiers.trees.DecisionStump
Returns the categorical result of the i'th path.
reuseSameCVFolds - Variable in class jsat.parameters.ModelSearch
If true, create the CV splits once and re-use them for all parameters
reverse() - Method in class jsat.utils.IndexTable
Reverse the current index order
RFF_RBF - Class in jsat.datatransform.kernel
An Implementation of Random Fourier Features for the RBFKernel.
RFF_RBF() - Constructor for class jsat.datatransform.kernel.RFF_RBF
Creates a new RFF RBF object that will use an transformed feature space with a dimensionality of 512.
RFF_RBF(double) - Constructor for class jsat.datatransform.kernel.RFF_RBF
Creates a new RFF RBF object that will use an transformed feature space with a dimensionality of 512.
RFF_RBF(double, int) - Constructor for class jsat.datatransform.kernel.RFF_RBF
Creates a new RFF RBF object
RFF_RBF(double, int, boolean) - Constructor for class jsat.datatransform.kernel.RFF_RBF
Creates a new RFF RBF object
RFF_RBF(int, double, int, Random, boolean) - Constructor for class jsat.datatransform.kernel.RFF_RBF
Creates a new RFF RBF object
RFF_RBF(RFF_RBF) - Constructor for class jsat.datatransform.kernel.RFF_RBF
Copy constructor
rho - Variable in class jsat.classifiers.linear.kernelized.DUOL
 
rho - Static variable in class jsat.text.GreekLetters
 
RiddersMethod - Class in jsat.math.rootfinding
 
RiddersMethod() - Constructor for class jsat.math.rootfinding.RiddersMethod
 
RidgeRegression - Class in jsat.regression
An implementation of Ridge Regression that finds the exact solution.
RidgeRegression() - Constructor for class jsat.regression.RidgeRegression
 
RidgeRegression(double) - Constructor for class jsat.regression.RidgeRegression
 
RidgeRegression(double, RidgeRegression.SolverMode) - Constructor for class jsat.regression.RidgeRegression
 
RidgeRegression.SolverMode - Enum in jsat.regression
Sets which solver to use
RMSProp - Class in jsat.math.optimization.stochastic
rmsprop is an adpative learning weight scheme proposed by Geoffrey Hinton.
RMSProp() - Constructor for class jsat.math.optimization.stochastic.RMSProp
Creates a new RMSProp updater that uses a decay rate of 0.9
RMSProp(double) - Constructor for class jsat.math.optimization.stochastic.RMSProp
Creates a new RMSProp updater
RMSProp(RMSProp) - Constructor for class jsat.math.optimization.stochastic.RMSProp
Copy constructor
Rocchio - Class in jsat.classifiers
 
Rocchio() - Constructor for class jsat.classifiers.Rocchio
 
Rocchio(DistanceMetric) - Constructor for class jsat.classifiers.Rocchio
 
romb(Function, double, double) - Static method in class jsat.math.integration.Romberg
 
romb(Function, double, double, int) - Static method in class jsat.math.integration.Romberg
 
Romberg - Class in jsat.math.integration
 
Romberg() - Constructor for class jsat.math.integration.Romberg
 
ROMMA - Class in jsat.classifiers.linear
Provides an implementation of the linear Relaxed online Maximum Margin algorithm, which finds a similar solution to SVMs.
ROMMA() - Constructor for class jsat.classifiers.linear.ROMMA
Creates a new aggressive ROMMA classifier
ROMMA(boolean) - Constructor for class jsat.classifiers.linear.ROMMA
Creates a new ROMMA classifier
ROMMA(ROMMA) - Constructor for class jsat.classifiers.linear.ROMMA
Copy constructor
root(double, double, Function, double...) - Static method in class jsat.math.rootfinding.Bisection
Uses the bisection method to find the argument of some function f for which f(args) = 0.
root(double, double, double, Function, double...) - Static method in class jsat.math.rootfinding.Bisection
 
root(double, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.Bisection
 
root(double, int, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.Bisection
Uses the bisection method to find the argument of some function f for which f(args) = 0.
root(double, int, double[], Function, int, double...) - Method in class jsat.math.rootfinding.Bisection
 
root(double, int, double[], Function, int, Vec) - Method in class jsat.math.rootfinding.Bisection
 
root(double, double, Function, double...) - Static method in class jsat.math.rootfinding.RiddersMethod
 
root(double, double, double, Function, double...) - Static method in class jsat.math.rootfinding.RiddersMethod
 
root(double, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.RiddersMethod
 
root(double, int, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.RiddersMethod
 
root(double, int, double[], Function, int, double...) - Method in class jsat.math.rootfinding.RiddersMethod
 
root(double, int, double[], Function, int, Vec) - Method in class jsat.math.rootfinding.RiddersMethod
 
root(double, int, double[], Function, int, double...) - Method in interface jsat.math.rootfinding.RootFinder
Attempts to numerical compute the root of a given function, such that f(args) = 0.
root(double, int, double[], Function, int, Vec) - Method in interface jsat.math.rootfinding.RootFinder
Attempts to numerical compute the root of a given function, such that f(args) = 0.
root(double, double, Function, double...) - Static method in class jsat.math.rootfinding.Secant
 
root(double, double, double, Function, double...) - Static method in class jsat.math.rootfinding.Secant
 
root(double, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.Secant
 
root(double, int, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.Secant
 
root(double, int, double[], Function, int, double...) - Method in class jsat.math.rootfinding.Secant
 
root(double, int, double[], Function, int, Vec) - Method in class jsat.math.rootfinding.Secant
 
root(double, double, Function, double...) - Static method in class jsat.math.rootfinding.Zeroin
 
root(double, double, double, Function, double...) - Static method in class jsat.math.rootfinding.Zeroin
 
root(double, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.Zeroin
 
root(double, int, double, double, int, Function, double...) - Static method in class jsat.math.rootfinding.Zeroin
Performs root finding on the function f.
root(double, int, double[], Function, int, double...) - Method in class jsat.math.rootfinding.Zeroin
 
root(double, int, double[], Function, int, Vec) - Method in class jsat.math.rootfinding.Zeroin
 
RootFinder - Interface in jsat.math.rootfinding
This interface defines a general contract for the numerical computation of a root of a given function
RosenbrockFunction - Class in jsat.math.optimization
The Rosenbrock function is a function with at least one minima with the value zero.
RosenbrockFunction() - Constructor for class jsat.math.optimization.RosenbrockFunction
 
RowColumnOps - Class in jsat.linear
A collection of mutable Row and Column operations that can be performed on matrices.
RowColumnOps() - Constructor for class jsat.linear.RowColumnOps
 
rows() - Method in class jsat.linear.DenseMatrix
 
rows() - Method in class jsat.linear.Matrix
Returns the number of rows stored in this matrix
rows() - Method in class jsat.linear.MatrixOfVecs
 
rows() - Method in class jsat.linear.RandomMatrix
 
rows() - Method in class jsat.linear.SparseMatrix
 
rows() - Method in class jsat.linear.SubMatrix
 
rows() - Method in class jsat.linear.TransposeView
 
Rprop - Class in jsat.math.optimization.stochastic
The Rprop algorithm provides adaptive learning rates using only first order information.
Rprop() - Constructor for class jsat.math.optimization.stochastic.Rprop
Creates a new Rprop instance for gradient updating
Rprop(Rprop) - Constructor for class jsat.math.optimization.stochastic.Rprop
Copy constructor
RTree<V extends Vec> - Class in jsat.linear.vectorcollection
 
RTree(int) - Constructor for class jsat.linear.vectorcollection.RTree
 
RTree(int, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.RTree
 
RTree(int, DistanceMetric, int) - Constructor for class jsat.linear.vectorcollection.RTree
 
RTree(int, DistanceMetric, int, int) - Constructor for class jsat.linear.vectorcollection.RTree
 
RTree(RTree) - Constructor for class jsat.linear.vectorcollection.RTree
Copy constructor
RTree.RTreeFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
RTreeFactory() - Constructor for class jsat.linear.vectorcollection.RTree.RTreeFactory
 
run() - Method in class jsat.utils.PoisonRunnable
 
run() - Method in class jsat.utils.RunnableConsumer
 
RunnableConsumer - Class in jsat.utils
The RunnableConsumer is meant to be used in conjunction with PoisonRunnable and an ExecutorService to implement a consumer / produce model.
RunnableConsumer(BlockingQueue<Runnable>) - Constructor for class jsat.utils.RunnableConsumer
Creates a new runnable that will consume and run other runnables.

S

S - Variable in class jsat.classifiers.linear.kernelized.DUOL
Set of support vectors
sameDimensions(Matrix, Matrix) - Static method in class jsat.linear.Matrix
Convenience method that will return true only if the two input matrices have the exact same dimensions.
SAMME - Class in jsat.classifiers.boosting
This is an implementation of the Multi-Class AdaBoost method SAMME (Stagewise Additive Modeling using a Multi-Class Exponential loss function), presented in Multi-class AdaBoost by Ji Zhu, Saharon Rosset, Hui Zou,&Trevor Hasstie

This algorithm reduces to AdaBoostM1 for binary classification problems.
SAMME(Classifier, int) - Constructor for class jsat.classifiers.boosting.SAMME
 
sample(int, Random) - Method in class jsat.clustering.EMGaussianMixture
 
sample(int, Random) - Method in class jsat.distributions.discrete.Poisson
 
sample(int, Random) - Method in class jsat.distributions.Distribution
This method returns a double array containing the values of random samples from this distribution.
sample(int, Random) - Method in class jsat.distributions.multivariate.Dirichlet
 
sample(int, Random) - Method in class jsat.distributions.multivariate.MetricKDE
Sampling not yet supported
sample(int, Random) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Performs sampling on the current distribution.
sample(int, Random) - Method in class jsat.distributions.multivariate.NormalM
 
sample(int, Random) - Method in class jsat.distributions.multivariate.ProductKDE
 
sample(int, Random) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
 
sampleBasisVectors(KernelTrick, DataSet, List<Vec>, Nystrom.SamplingMethod, int, boolean, Random) - Static method in class jsat.datatransform.kernel.Nystrom
Performs sampling of a data set for a subset of the vectors that make a good set of basis vectors for forming an approximation of a full kernel space.
sampleCorCoeff(Vec, Vec) - Static method in class jsat.math.DescriptiveStatistics
Computes the sample correlation coefficient for two data sets X and Y.
sampleVec(int, Random) - Method in class jsat.distributions.Distribution
This method returns a double array containing the values of random samples from this distribution.
sampleWithReplacement(int[], int, Random) - Static method in class jsat.classifiers.boosting.Bagging
Performs the sampling based on the number of data points, storing the counts in an array to be constructed from XXXX
saveCentroidDistance - Variable in class jsat.clustering.kmeans.KMeans
Indicates whether or not the distance between a datapoint and its nearest centroid should be saved after clustering.
SBP - Class in jsat.classifiers.svm
Implementation of the Stochastic Batch Perceptron (SBP) algorithm.
SBP(KernelTrick, SupportVectorLearner.CacheMode, int, double) - Constructor for class jsat.classifiers.svm.SBP
Creates a new SBP SVM learner
SBP(SBP) - Constructor for class jsat.classifiers.svm.SBP
Copy constructor
SBS - Class in jsat.datatransform.featureselection
Sequential Backward Selection (SBS) is a greedy method of selecting a subset of features to use for prediction.
SBS(int, int, Classifier, double) - Constructor for class jsat.datatransform.featureselection.SBS
Performs SBS feature selection for a classification problem
SBS(int, int, ClassificationDataSet, Classifier, int, double) - Constructor for class jsat.datatransform.featureselection.SBS
Performs SBS feature selection for a classification problem
SBS(int, int, Regressor, double) - Constructor for class jsat.datatransform.featureselection.SBS
Performs SBS feature selection for a regression problem
SBS(int, int, RegressionDataSet, Regressor, int, double) - Constructor for class jsat.datatransform.featureselection.SBS
Performs SBS feature selection for a regression problem
SBSRemoveFeature(Set<Integer>, DataSet, Set<Integer>, Set<Integer>, Set<Integer>, Set<Integer>, Object, int, Random, int, double[], double) - Static method in class jsat.datatransform.featureselection.SBS
Attempts to remove one feature from the list while maintaining its accuracy
scaleBandwidth(double) - Method in class jsat.distributions.multivariate.MetricKDE
 
scaleBandwidth(double) - Method in class jsat.distributions.multivariate.MultivariateKDE
A caller may want to increase or decrease the bandwidth after training has been completed to get smoother model, or decrease it to observe behavior.
scaleBandwidth(double) - Method in class jsat.distributions.multivariate.ProductKDE
 
ScaledVector - Class in jsat.linear
A wrapper for a vector that represents the vector multiplied by a scalar constant.
ScaledVector(double, Vec) - Constructor for class jsat.linear.ScaledVector
Creates a new scaled vector
ScaledVector(Vec) - Constructor for class jsat.linear.ScaledVector
Creates a new scaled vector with a default scale of 1.
SCD - Class in jsat.classifiers.linear
Implementation of Stochastic Coordinate Descent for L1 regularized classification and regression.
SCD(LossFunc, double, int) - Constructor for class jsat.classifiers.linear.SCD
Creates anew SCD learner
SCD(SCD) - Constructor for class jsat.classifiers.linear.SCD
Copy constructor
SCW - Class in jsat.classifiers.linear
Provides an Implementation of Confidence-Weighted (CW) learning and Soft Confidence-Weighted (SCW), both of which are binary linear classifiers inspired by PassiveAggressive.
SCW() - Constructor for class jsat.classifiers.linear.SCW
Creates a new SCW learner
SCW(double, SCW.Mode, boolean) - Constructor for class jsat.classifiers.linear.SCW
Creates a new SCW learner
SCW(SCW) - Constructor for class jsat.classifiers.linear.SCW
Copy constructor
SCW.Mode - Enum in jsat.classifiers.linear
Which version of the algorithms shuld be used
search(Vec, double) - Method in class jsat.linear.vectorcollection.CoverTree
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.CoverTree
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.EuclideanCollection
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.EuclideanCollection
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.KDTree
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.KDTree
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.RandomBallCover
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.RandomBallCover
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.RTree
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.RTree
 
search(Vec, double) - Method in class jsat.linear.vectorcollection.VectorArray
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.VectorArray
 
search(Vec, double) - Method in interface jsat.linear.vectorcollection.VectorCollection
Searches the space for all vectors that are within a given range of the query vector.
search(Vec, int) - Method in interface jsat.linear.vectorcollection.VectorCollection
Searches the space for the k neighbors that are closest to the given query vector
search(Vec, double) - Method in class jsat.linear.vectorcollection.VPTree
 
search(Vec, int) - Method in class jsat.linear.vectorcollection.VPTree
 
searchParams - Variable in class jsat.parameters.ModelSearch
The list of parameters we will search for, currently only Int and Double params should be used
searchR(Vec) - Method in class jsat.linear.vectorcollection.lsh.E2LSH
Performs a search for points within the set radius of the query point.
searchR(Vec, boolean) - Method in class jsat.linear.vectorcollection.lsh.E2LSH
Performs a search for points within the set radius of the query point.
Secant - Class in jsat.math.rootfinding
 
Secant() - Constructor for class jsat.math.rootfinding.Secant
 
sech(double) - Static method in class jsat.math.TrigMath
 
seedSelection - Variable in class jsat.clustering.kmeans.KMeans
 
seedSelection - Variable in class jsat.clustering.PAM
 
SeedSelectionMethods - Class in jsat.clustering
This class provides methods for sampling a data set for a set of initial points to act as the seeds for a clustering algorithm.
SeedSelectionMethods.SeedSelection - Enum in jsat.clustering
 
selectIntialPoints(DataSet, int, DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selectIntialPoints(DataSet, int, DistanceMetric, List<Double>, Random, SeedSelectionMethods.SeedSelection) - Static method in class jsat.clustering.SeedSelectionMethods
 
selectIntialPoints(DataSet, int, DistanceMetric, Random, SeedSelectionMethods.SeedSelection, ExecutorService) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selectIntialPoints(DataSet, int, DistanceMetric, List<Double>, Random, SeedSelectionMethods.SeedSelection, ExecutorService) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selectIntialPoints(DataSet, int[], DistanceMetric, Random, SeedSelectionMethods.SeedSelection) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selectIntialPoints(DataSet, int[], DistanceMetric, List<Double>, Random, SeedSelectionMethods.SeedSelection) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selectIntialPoints(DataSet, int[], DistanceMetric, Random, SeedSelectionMethods.SeedSelection, ExecutorService) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selectIntialPoints(DataSet, int[], DistanceMetric, List<Double>, Random, SeedSelectionMethods.SeedSelection, ExecutorService) - Static method in class jsat.clustering.SeedSelectionMethods
Selects seeds from a data set to use for a clustering algorithm.
selfK - Variable in class jsat.clustering.kmeans.KernelKMeans
The value of k(x,x) for every point in KernelKMeans.X
set(int, double) - Method in class jsat.linear.ConcatenatedVec
 
set(int, double) - Method in class jsat.linear.ConstantVector
 
set(int, int, double) - Method in class jsat.linear.DenseMatrix
 
set(int, double) - Method in class jsat.linear.DenseVector
 
set(int, int, double) - Method in class jsat.linear.Matrix
Sets the value stored at at the matrix position Ai,j
set(int, int, double) - Method in class jsat.linear.MatrixOfVecs
 
set(int, double) - Method in class jsat.linear.Poly2Vec
 
set(int, int, double) - Method in class jsat.linear.RandomMatrix
 
set(int, double) - Method in class jsat.linear.RandomVector
 
set(int, double) - Method in class jsat.linear.ScaledVector
 
set(int, double) - Method in class jsat.linear.ShiftedVec
 
set(int, int, double) - Method in class jsat.linear.SparseMatrix
 
set(int, double) - Method in class jsat.linear.SparseVector
 
set(int, int, double) - Method in class jsat.linear.SubMatrix
 
set(int, double) - Method in class jsat.linear.SubVector
 
set(int, int, double) - Method in class jsat.linear.TransposeView
 
set(int, double) - Method in class jsat.linear.Vec
Sets the value stored at a specified index in the vector
set(int, double) - Method in class jsat.linear.VecPaired
 
set(int, double) - Method in class jsat.linear.VecWithNorm
 
set(double) - Method in class jsat.utils.concurrent.AtomicDouble
 
set(int, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Sets the element at position i to the given value.
set(int, double) - Method in class jsat.utils.DoubleList
set(int, Double) - Method in class jsat.utils.DoubleList
 
set(int, int) - Method in class jsat.utils.IntList
set(int, Integer) - Method in class jsat.utils.IntList
 
set(int, long) - Method in class jsat.utils.LongList
set(int, Long) - Method in class jsat.utils.LongList
 
set(int, E) - Method in class jsat.utils.SimpleList
 
setActivationFunction(BackPropagationNet.ActivationFunction) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the activation function used for the network
setAggressive(boolean) - Method in class jsat.classifiers.linear.ROMMA
Determines whether the normal or aggressive ROMMA algorithm will be used.
setAlpha(double) - Method in class jsat.classifiers.linear.ALMA2
Alpha controls the approximation of the large margin formed by ALMA, with larger values causing more updates.
setAlpha(double) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Alpha controls the approximation of the large margin formed by ALMA, with larger values causing more updates.
setAlpha(double) - Method in class jsat.classifiers.linear.NewGLMNET
Using α = 1 corresponds to pure L1 regularization, and α = 0 corresponds to pure L2 regularization.
setAlpha(double) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the extra parameter alpha.
setAlpha(double) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets the alpha parameter.
setAlpha(double) - Method in class jsat.clustering.LSDBC
Sets the scale value that will control how many points are added to a cluster.
setAlpha(double) - Method in class jsat.datatransform.visualization.TSNE
α is the "early exaggeration" constant.
setAlpha(double) - Method in class jsat.distributions.kernels.PolynomialKernel
Sets the scaling factor for the dot product, this is equivalent to multiplying each value in the data set by a constant factor
setAlpha(double) - Method in class jsat.distributions.kernels.SigmoidKernel
Sets the scaling factor for the dot product, this is equivalent to multiplying each value in the data set by a constant factor
setAlpha(double) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
Sets the alpha value used for the distribution
setAlpha(double) - Method in class jsat.distributions.Pareto
 
setAlpha(double) - Method in class jsat.distributions.Weibull
 
setAlpha(double) - Method in class jsat.math.decayrates.InverseDecay
Controls the scaling of the divisor, increasing α dampens the whole range of values.
setAlpha(double) - Method in class jsat.math.decayrates.PowerDecay
Controls the scaling via exponentiation, increasing α increases the rate at which the rate decays.
setAlpha(double) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Sets the prior for the on weight vector theta.
setAlphas(double[]) - Method in class jsat.classifiers.svm.SupportVectorLearner
Sets the final set of alphas, and indicates that the final accelerating structures (if available) should be constructed for performing kernel evaluations against unseen vectors.
setAlphas(Vec) - Method in class jsat.distributions.multivariate.Dirichlet
Sets the alphas of the distribution.
setAltHypothesis(StatisticTest.H1) - Method in class jsat.testing.onesample.TTest
 
setAltHypothesis(StatisticTest.H1) - Method in class jsat.testing.onesample.ZTest
 
setAltHypothesis(StatisticTest.H1) - Method in interface jsat.testing.StatisticTest
 
setAltVar(double) - Method in interface jsat.testing.onesample.OneSampleTest
 
setAltVar(double) - Method in class jsat.testing.onesample.TTest
 
setAltVar(double) - Method in class jsat.testing.onesample.ZTest
 
setAutoSetRegularization(boolean) - Method in class jsat.classifiers.linear.BBR
Sets whether or not the regularization term will be set automatically by the algorithm, which is done as specified in the original paper.
setAveraged(boolean) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
ALMA2K supports taking the averaged output of all previous hypothesis weighted by the number of successful uses of the hypothesis during training.
setB(double) - Method in class jsat.classifiers.linear.ALMA2
Sets the B variable of the ALMA algorithm, this is set automatically by ALMA2.setAlpha(double).
setB(double) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Sets the B variable of the ALMA algorithm, this is set automatically by ALMA2K.setAlpha(double).
setB(double) - Method in class jsat.distributions.Laplace
 
setBandwith(double) - Method in class jsat.distributions.empirical.KernelDensityEstimator
Sets the bandwidth used for smoothing.
setBandwith(double) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the bandwidth used to estimate the density of the underlying distribution.
setBase(Vec) - Method in class jsat.linear.Poly2Vec
Creates a new vector that implicitly represents the degree 2 polynomial of the base vector.
setBaseData(Vec) - Method in class jsat.testing.goodnessoffit.KSTest
Change the original sample to v
setBasisSamplingMethod(Nystrom.SamplingMethod) - Method in class jsat.datatransform.kernel.KernelPCA
Sets the method of selecting the basis vectors
setBasisSamplingMethod(Nystrom.SamplingMethod) - Method in class jsat.datatransform.kernel.Nystrom
Sets the method of selecting the basis vectors
setBasisSize(int) - Method in class jsat.datatransform.kernel.KernelPCA
Sets the basis size for the Kernel PCA to be learned from.
setBasisSize(int) - Method in class jsat.datatransform.kernel.Nystrom
Sets the basis size for the Kernel PCA to be learned from.
setBatchSize(int) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the batch size use to estimate the gradient of the error for training
setBatchSize(int) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
Sets the batch size for updates
setBatchSize(int) - Method in class jsat.classifiers.svm.Pegasos
Sets the batch size used during training.
setBatchSize(int) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Sets the batch size to use at each iteration.
setBatchSize(int) - Method in class jsat.regression.StochasticRidgeRegression
Sets the batch size to learn from.
setBeta(double) - Method in class jsat.distributions.Weibull
 
setBeta(double) - Method in class jsat.math.optimization.ModifiedOWLQN
Sets the shrinkage term used for the line search.
setBiasInit(BiastInitializer) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the method to use when initializing neuron bias values
setBinaryCategoricalSplitting(boolean) - Method in class jsat.classifiers.trees.ExtraTree
The normal implementation of ExtraTree always produces binary splits, including for categorical features.
setBudget(int) - Method in class jsat.classifiers.linear.kernelized.BOGD
Sets the budget for support vectors
setBudget(int) - Method in class jsat.classifiers.linear.kernelized.Forgetron
Sets the new budget, which is the maximum number of data points the Forgetron can use to form its decision boundary.
setBudgetSize(int) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the maximum budget size, or number of support vectors, to allow during training.
setBudgetStrategy(KernelPoint.BudgetStrategy) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the budget maintenance strategy.
setBudgetStrategy(KernelPoint.BudgetStrategy) - Method in class jsat.distributions.kernels.KernelPoint
Sets the method used for maintaining the budget of support vectors.
setBudgetStrategy(KernelPoint.BudgetStrategy) - Method in class jsat.distributions.kernels.KernelPoints
Sets the method used for maintaining the budget of support vectors.
setBurnIn(int) - Method in class jsat.classifiers.linear.kernelized.OSKL
Sets the number of update calls to consider as part of the "burn in" phase.
setBurnIn(double) - Method in class jsat.classifiers.svm.SBP
Sets the burn in fraction.
setC(double) - Method in class jsat.classifiers.linear.ALMA2
Sets the C value of the ALMA algorithm.
setC(double) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Sets the C value of the ALMA algorithm.
setC(double) - Method in class jsat.classifiers.linear.kernelized.DUOL
Sets the aggressiveness parameter.
setC(double) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Sets the regularization trade-off term.
setC(double) - Method in class jsat.classifiers.linear.NewGLMNET
Sets the regularization term, where smaller values indicate a larger regularization penalty.
setC(double) - Method in class jsat.classifiers.linear.NHERD
Set the aggressiveness parameter.
setC(double) - Method in class jsat.classifiers.linear.PassiveAggressive
Set the aggressiveness parameter.
setC(double) - Method in class jsat.classifiers.linear.SCW
Set the aggressiveness parameter.
setC(double) - Method in class jsat.classifiers.linear.SPA
Set the aggressiveness parameter.
setC(double) - Method in class jsat.classifiers.svm.DCD
Sets the penalty parameter for misclassifications.
setC(double) - Method in class jsat.classifiers.svm.DCDs
Sets the penalty parameter for misclassifications.
setC(double) - Method in class jsat.classifiers.svm.DCSVM
Sets the complexity parameter of SVM.
setC(double) - Method in class jsat.classifiers.svm.extended.OnlineAMM
Sets the pruning constant which controls how powerful pruning is when pruning occurs.
setC(double) - Method in class jsat.classifiers.svm.LSSVM
Sets the regularization constant when training.
setC(double) - Method in class jsat.classifiers.svm.PlattSMO
Sets the complexity parameter of SVM.
setC(double) - Method in class jsat.classifiers.svm.SVMnoBias
Sets the complexity parameter of SVM.
setC(int) - Method in class jsat.datatransform.FastICA
Sets the number of base components to learn
setC(double) - Method in class jsat.distributions.kernels.LinearKernel
The positive bias term added to the result of the dot product
setC(double) - Method in class jsat.distributions.kernels.PolynomialKernel
Sets the additive term, when set to one this is equivalent to adding a bias term of 1 to each vector.
setC(double) - Method in class jsat.distributions.kernels.RationalQuadraticKernel
Sets the positive additive coefficient
setC(double) - Method in class jsat.distributions.kernels.SigmoidKernel
Sets the additive term, when set to one this is equivalent to adding a bias term of 1 to each vector.
setC1(double) - Method in class jsat.math.optimization.BacktrackingArmijoLineSearch
Sets the constant used for the sufficient decrease condition f(x+α p) ≤ f(x) + c1 α pT∇f(x)
setC1(double) - Method in class jsat.math.optimization.WolfeNWLineSearch
Sets the constant used for the sufficient decrease condition f(x+α p) ≤ f(x) + c1 α pT∇f(x)

This value must always be less than WolfeNWLineSearch.setC2(double)
setC2(double) - Method in class jsat.math.optimization.WolfeNWLineSearch
Sets the constant used for the curvature condition pT ∇f(x+α p) ≥ c2 pT∇f(x)
setCacheMode(SupportVectorLearner.CacheMode) - Method in class jsat.classifiers.svm.SupportVectorLearner
Calling this sets the method of caching that will be used.
setCacheSize(long, long) - Method in class jsat.classifiers.svm.SupportVectorLearner
Sets the cache value to one that will use the specified amount of memory.
setCacheValue(int) - Method in class jsat.classifiers.svm.SupportVectorLearner
Sets the cache value, which may be interpreted differently by different caching schemes.
setCalibrationFolds(int) - Method in class jsat.classifiers.calibration.BinaryCalibration
If the calibration mode is set to BinaryCalibration.CalibrationMode.CV, this controls how many folds of cross validation will be used.
setCalibrationHoldOut(double) - Method in class jsat.classifiers.calibration.BinaryCalibration
If the calibration mode is set to BinaryCalibration.CalibrationMode.HOLD_OUT, this what portion of the data set is randomly selected to be the hold out set.
setCalibrationMode(BinaryCalibration.CalibrationMode) - Method in class jsat.classifiers.calibration.BinaryCalibration
Sets which calibration mode will be used during training
setCategoryName(String) - Method in class jsat.classifiers.CategoricalData
 
setCIsomap(boolean) - Method in class jsat.datatransform.visualization.Isomap
Controls whether the C-Isomap extension is used.
setClassBudget(int) - Method in class jsat.classifiers.svm.extended.OnlineAMM
When given bad parameters there is the possibility for unbounded growth in the number of hyperplanes used.
setClassificationTargetScore(ClassificationScore) - Method in class jsat.parameters.ModelSearch
Sets the score to attempt to optimize when performing grid search on a classification problem.
setClipping(boolean) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets whether or not the clip changes in coefficient values caused by regularization so that they can not make the coefficients go from positive to negative or negative to positive.
setClusterSampleSize(int) - Method in class jsat.classifiers.svm.DCSVM
At each level of the DC-SVM training, a clustering algorithm is used to divide the dataset into sub-groups for independent training.
setCoefficient(double) - Method in class jsat.classifiers.boosting.ArcX4
Weights are updated as 1+coef*errorsexpo.
setConcurrentTraining(boolean) - Method in class jsat.classifiers.OneVSAll
Controls what method of parallel training to use when OneVSAll.trainC(jsat.classifiers.ClassificationDataSet, java.util.concurrent.ExecutorService) is called.
setConcurrentTraining(boolean) - Method in class jsat.classifiers.OneVSOne
Controls whether or not training of the several classifiers occurs concurrently or sequentually.
setConstant(double) - Method in class jsat.classifiers.neuralnetwork.initializers.ConstantInit
 
setConstant(double) - Method in class jsat.linear.ConstantVector
Sets the constant value that will be used as the value stored in every index of this vector.
setContraction(double) - Method in class jsat.math.optimization.NelderMead
Sets the contraction constant, which must be in the range (0, 1)
setCovariance(Matrix) - Method in class jsat.distributions.multivariate.NormalM
Sets the covariance matrix for this matrix.
setCovMode(NHERD.CovMode) - Method in class jsat.classifiers.linear.NHERD
Sets the way in which the covariance matrix is formed.
setD(int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Sets the approximate number of documents that will be observed
setDataPoint(int, DataPoint) - Method in class jsat.classifiers.ClassificationDataSet
 
setDataPoint(DataPoint) - Method in class jsat.classifiers.DataPointPair
 
setDataPoint(int, DataPoint) - Method in class jsat.DataSet
Replaces an already existing data point with the one given.
setDataPoint(int, DataPoint) - Method in class jsat.regression.RegressionDataSet
 
setDataPoint(int, DataPoint) - Method in class jsat.SimpleDataSet
 
setDataTransformProcess(DataTransformProcess) - Method in class jsat.classifiers.ClassificationModelEvaluation
Sets the data transform process to use when performing cross validation.
setDataTransformProcess(DataTransformProcess) - Method in class jsat.regression.RegressionModelEvaluation
Sets the data transform process to use when performing cross validation.
setDefaultK(int) - Method in class jsat.distributions.multivariate.MetricKDE
When estimating the bandwidth, the mean of the k'th nearest neighbors to each data point is used.
setDefaultStndDev(double) - Method in class jsat.distributions.multivariate.MetricKDE
When estimating the bandwidth, the mean of the neighbor distances is used, and a multiple of the standard deviations is added.
setDegree(int) - Method in class jsat.datatransform.PolynomialTransform
Sets the degree of the polynomial to transform the input vector into
setDegree(double) - Method in class jsat.distributions.kernels.PolynomialKernel
Sets the degree of the polynomial
setDelta(double) - Method in class jsat.driftdetectors.ADWIN
Sets the upper bound on the false positive rate for detecting concept drifts
setDf(double) - Method in class jsat.distributions.StudentT
Sets the degrees of freedom used by the test.
setDiagonalOnly(boolean) - Method in class jsat.classifiers.linear.AROW
Using the full covariance matrix requires O(d2) work on mistakes, where d is the dimension of the data.
setDiagonalOnly(boolean) - Method in class jsat.classifiers.linear.SCW
Using the full covariance matrix requires O(d2) work on updates, where d is the dimension of the data.
setDimension(int) - Method in class jsat.datatransform.kernel.Nystrom
Sets the dimension of the new feature space, which is the number of principal components to select from the kernelized feature space.
setDimension(int) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
Sets the dimension size of the distribution
setDimensions(int) - Method in class jsat.datatransform.kernel.KernelPCA
Sets the dimension of the new feature space, which is the number of principal components to select from the kernelized feature space.
setDimensions(int) - Method in class jsat.datatransform.kernel.RFF_RBF
Sets the number of dimensions in the new approximate space to use.
setDimensions(int) - Method in class jsat.datatransform.WhitenedPCA
Sets the number of dimensions to project down to
setDistance(double[][], int, int, double) - Static method in class jsat.clustering.dissimilarity.AbstractClusterDissimilarity
A convenience method.
setDistanceMetric(DistanceMetric) - Method in class jsat.classifiers.knn.LWL
Sets the distance metric that will be used for the nearest neighbor search
setDistanceMetric(DistanceMetric) - Method in class jsat.classifiers.knn.NearestNeighbour
 
setDistanceMetric(DistanceMetric) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the distance used for learning
setDistanceMetric(DistanceMetric) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets the distance metric used to determine neuron activations.
setDistanceMetric(DistanceMetric) - Method in class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
Sets the distance metric to be used whenever this object is called to evaluate a cluster
setDistanceMetric(DistanceMetric) - Method in class jsat.clustering.FLAME
Sets the distance metric to use for the nearest neighbor search
setDistanceMetric(DistanceMetric) - Method in class jsat.clustering.GapStatistic
Sets the distance metric to use when evaluating a clustering algorithm
setDistanceMetric(DistanceMetric) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Sets the distance metric used for determining the nearest cluster center
setDistanceMetric(DistanceMetric) - Method in class jsat.clustering.LSDBC
Sets the distance metric used when performing clustering.
setDistanceMetric(DistanceMetric) - Method in class jsat.clustering.OPTICS
Sets the distance metric used to compute distances in the algorithm.
setDistanceMetric(DistanceMetric) - Method in class jsat.datatransform.featureselection.ReliefF
Sets the distance metric to infer the feature importance with
setDistanceMetric(DistanceMetric) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the distance metric that is used for density estimation
setDistanceMetric(DistanceMetric) - Method in class jsat.linear.vectorcollection.VectorArray
 
setDistanceMetricEmbedding(DistanceMetric) - Method in class jsat.datatransform.visualization.LargeViz
Sets the distance metric to use for the embedded space.
setDistanceMetrics(DistanceMetric) - Method in class jsat.clustering.HDBSCAN
Sets the distance metric to use for determining closeness between data points
setDistanceMetricSource(DistanceMetric) - Method in class jsat.datatransform.visualization.LargeViz
Sets the distance metric to use for the original space.
setDistribution(ContinuousDistribution) - Method in class jsat.classifiers.boosting.Wagging
Sets the distribution to select the random weights from
setDistribution(ContinuousDistribution) - Method in class jsat.classifiers.boosting.WaggingNormal
 
setDriftThreshold(double) - Method in class jsat.driftdetectors.DDM
Sets the multiplier on the standard deviation that must be exceeded to recognize the change as a drift.
setDropoutHidden(double) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the probability of dropping a value from the hidden layer
setDropoutInput(double) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the probability of dropping a value from the input layer
setEmbeddingMetric(DistanceMetric) - Method in class jsat.datatransform.visualization.MDS
Sets the distance metric to use when creating the initial dissimilarity matrix of a new dataset.
setEndLevel(int) - Method in class jsat.classifiers.svm.DCSVM
The DC-SVM algorithm works by creating a hierarchy of levels, and iteratively refining the solution from one level to the next.
setEntropyThreshold(double) - Method in class jsat.classifiers.svm.extended.CPM
Sets the entropy threshold used for training.
setEpochs(int) - Method in class jsat.classifiers.BaseUpdateableClassifier
Sets the number of whole iterations through the training set that will be performed for training
setEpochs(int) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Sets the number of training epochs (passes) through the data set
setEpochs(int) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the number of iterations of the training set done during batch training
setEpochs(int) - Method in class jsat.classifiers.linear.PassiveAggressive
Sets the number of whole iterations through the training set that will be performed for training
setEpochs(int) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the maximum number of epochs that occur in each iteration.
setEpochs(int) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Sets the number of iterations of training that will be performed.
setEpochs(int) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the number of epochs of training used.
setEpochs(int) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
Sets the number of epochs to perform
setEpochs(int) - Method in class jsat.classifiers.svm.extended.CPM
Sets the number of whole iterations through the training set that will be performed for training
setEpochs(int) - Method in class jsat.classifiers.svm.Pegasos
Sets the number of iterations through the training set that will be performed.
setEpochs(int) - Method in class jsat.regression.BaseUpdateableRegressor
Sets the number of whole iterations through the training set that will be performed for training
setEpochs(int) - Method in class jsat.regression.StochasticRidgeRegression
Sets the number of iterations through the whole training set that will be performed.
setEpochs(int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Sets the number of training epochs when learning in a "batch" setting
setEps(double) - Method in class jsat.classifiers.linear.PassiveAggressive
Sets the range for numerical prediction.
setEps(double) - Method in class jsat.classifiers.svm.DCD
Sets the eps used in the epsilon insensitive loss function used when performing regression.
setEps(double) - Method in class jsat.classifiers.svm.DCDs
Sets the eps used in the epsilon insensitive loss function used when performing regression.
setEps(double) - Method in class jsat.clustering.FLAME
Sets the convergence goal for the minimum difference in score between rounds.
setEps(double) - Method in class jsat.math.optimization.ModifiedOWLQN
Sets the epsilon term that helps control when the gradient descent step is taken instead of the normal Quasi-Newton step.
setEpsilon(double) - Method in class jsat.classifiers.knn.DANN
Sets the regularization to apply the the diagonal of the scatter matrix when creating each new metric.
setEpsilon(double) - Method in class jsat.classifiers.svm.PlattSMO
Sets the epsilon for the epsilon insensitive loss when performing regression.
setEpsilonDistance(double) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the epsilon multiplier that controls the maximum distance two learning vectors can be from each other in order to be updated at the same time.
setErrorTolerance(double) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the error tolerance used for certain budget strategies
setErrorTolerance(double) - Method in class jsat.distributions.kernels.KernelPoint
Sets the error tolerance used for projection maintenance strategies such as KernelPoint.BudgetStrategy.PROJECTION
setErrorTolerance(double) - Method in class jsat.distributions.kernels.KernelPoints
Sets the error tolerance used for projection maintenance strategies such as KernelPoint.BudgetStrategy.PROJECTION
setErrorTolerance(double) - Method in class jsat.regression.KernelRLS
Sets the tolerance for errors in approximating a data point by projecting it onto the set of basis vectors.
setEta(double) - Method in class jsat.classifiers.linear.kernelized.BOGD
Sets the learning rate to use for training.
setEta(double) - Method in class jsat.classifiers.linear.kernelized.CSKLR
Sets the learning rate to use for the algorithm.
setEta(double) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Sets the learning rate to use for the algorithm.
setEta(double) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the base learning rate to start from.
setEta(double) - Method in class jsat.classifiers.linear.kernelized.OSKL
Sets the learning rate to use for training.
setEta(double) - Method in class jsat.classifiers.linear.kernelized.Projectron
Sets the η parameter which controls the sparsity of the Projection solution.
setEta(double) - Method in class jsat.classifiers.linear.LinearSGD
Sets the initial learning rate η to use.
setEta(double) - Method in class jsat.classifiers.linear.SCW
SCW uses a probabilistic version of the margin and attempts to make a correction so that the confidence with correct label would be of a certain threshold, which is set by eta.
setEta(double) - Method in class jsat.classifiers.linear.SMIDAS
Sets the learning rate used during training
setEta(double) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the base global learning rate.
setEta(double) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Prior on topics.
setEtaDecay(DecayRate) - Method in class jsat.classifiers.linear.LinearSGD
Sets the rate at which η is decayed at each update.
setEtaDecay(DecayRate) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the decay rate on the global learning rate over time
setExpansion(double) - Method in class jsat.math.optimization.NelderMead
Sets the expansion constant, which must be greater than 1 and the reflection constant
setExponent(double) - Method in class jsat.classifiers.boosting.ArcX4
Weights are updated as 1+coef*errorsexpo.
setExtractionMethod(OPTICS.ExtractionMethod) - Method in class jsat.clustering.OPTICS
Sets the method used to extract clusters from the reachability plot.
setExtraSamples(int) - Method in class jsat.classifiers.boosting.Bagging
Bagging samples from the training set with replacement, and draws a sampleWithReplacement at least as large as the training set.
setExtraSamples(int) - Method in class jsat.classifiers.trees.RandomForest
RandomForest performs Bagging.
setFeatureCount(int) - Method in class jsat.datatransform.featureselection.BDS
Sets the number of features to select for use from the set of all input features
setFeatureCount(int) - Method in class jsat.datatransform.featureselection.MutualInfoFS
Sets the number of features to select
setFeatureCount(int) - Method in class jsat.datatransform.featureselection.ReliefF
Sets the number of features to select for use from the set of all input features
setFeatureSamples(int) - Method in class jsat.classifiers.trees.RandomForest
Instead of using a heuristic, the exact number of features to sample is provided.
setFeaturesToAdd(int) - Method in class jsat.datatransform.featureselection.LRS
Sets the number of features to add (the L parameter).
setFeaturesToRemove(int) - Method in class jsat.datatransform.featureselection.LRS
Sets the number of features to remove (the R parameter).
setFinalizeAfterTraining(boolean) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
If set true, the model will be finalized after a call to MultinomialNaiveBayes.trainC(jsat.classifiers.ClassificationDataSet).
setFirstItem(X) - Method in class jsat.utils.Pair
 
setFolds(int) - Method in class jsat.classifiers.boosting.Stacking
Sets the number of folds of cross validation to use when creating the new set of weights that will be feed into the aggregating model.
setFolds(int) - Method in class jsat.datatransform.featureselection.BDS
Sets the number of folds to use for cross validation when estimating the error rate
setFolds(int) - Method in class jsat.datatransform.featureselection.LRS
Sets the number of folds to use for cross validation when estimating the error rate
setFolds(int) - Method in class jsat.datatransform.featureselection.SBS
Sets the number of folds to use for cross validation when estimating the error rate
setFolds(int) - Method in class jsat.datatransform.featureselection.SFS
Sets the number of folds to use for cross validation when estimating the error rate
setForrestSize(int) - Method in class jsat.classifiers.trees.ERTrees
 
setG(double) - Method in class jsat.classifiers.linear.kernelized.OSKL
Sets the sparsification parameter G.
setGainMethod(ImpurityScore.ImpurityMeasure) - Method in class jsat.classifiers.trees.DecisionStump
 
setGainMethod(ImpurityScore.ImpurityMeasure) - Method in class jsat.classifiers.trees.DecisionTree
 
setGamma(double) - Method in class jsat.classifiers.linear.kernelized.CSKLR
Sets the gamma value to use.
setGamma(double) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Sets the gamma value to use.
setGamma(double) - Method in class jsat.datatransform.visualization.LargeViz
Gamma controls the negative weight assigned to negative edges in the optimization problem.
setGradientUpdater(GradientUpdater) - Method in class jsat.classifiers.linear.LinearSGD
Sets the method that will be used to update the weight vectors given their gradient information.
setGradientUpdater(GradientUpdater) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the gradient update that will be used when updating the weight matrices and bias terms.
setGravity(double) - Method in class jsat.classifiers.linear.STGD
Sets the gravity regularization parameter that "weighs down" the coefficient values.
setHandling(MutualInfoFS.NumericalHandeling) - Method in class jsat.datatransform.featureselection.MutualInfoFS
Sets the method of numericHandling numeric features
setHiddenSizes(int[]) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
Sets the hidden layer sizes for this network.
setImag(double) - Method in class jsat.math.Complex
Sets the imaginary value part of this complex number
setImpurityMeasure(ImpurityScore.ImpurityMeasure) - Method in class jsat.classifiers.trees.ExtraTree
Sets the impurity measure used during classification tree construction to select the best of the features.
setIndex(int) - Method in class jsat.linear.IndexValue
Sets the index associated with the value.
setInftNormCriterion(boolean) - Method in class jsat.math.optimization.BFGS
By default the infinity norm is used to judge convergence.
setInftNormCriterion(boolean) - Method in class jsat.math.optimization.LBFGS
By default the infinity norm is used to judge convergence.
setInitialLearningRate(double) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the initial learning rate to use for the first epoch.
setInitialLearningRate(double) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the initial learning rate used for the first epoch
setInitialLearningRate(double) - Method in class jsat.classifiers.neuralnetwork.SOM
Sets the rate at which input is incorporated at each iteration of the SOM algorithm
setInitialTrainSize(int) - Method in class jsat.regression.RANSAC
Sets the number of data points to be sampled from the training set to create initial models.
setInMemory(boolean) - Method in class jsat.datatransform.JLTransform
Sets whether or not the transform matrix is stored explicitly in memory or not.
setInMemory(boolean) - Method in class jsat.datatransform.kernel.RFF_RBF
Sets whether or not the transform matrix is stored explicitly in memory or not.
setIterationLimit(int) - Method in class jsat.clustering.EMGaussianMixture
Sets the maximum number of iterations allowed
setIterationLimit(int) - Method in class jsat.clustering.kmeans.GMeans
 
setIterationLimit(int) - Method in class jsat.clustering.kmeans.KMeans
Sets the maximum number of iterations allowed
setIterationLimit(int) - Method in class jsat.clustering.kmeans.XMeans
 
setIterations(int) - Method in class jsat.classifiers.boosting.ArcX4
Sets the number of iterations to perform
setIterations(int) - Method in class jsat.classifiers.boosting.Wagging
Sets the number of iterations to create weak learners
setIterations(int) - Method in class jsat.classifiers.linear.SCD
Sets the number of iterations that will be used.
setIterations(int) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the number of learning iterations that will occur.
setIterations(int) - Method in class jsat.classifiers.svm.PegasosK
Sets the number of iterations of the algorithm to perform.
setIterations(int) - Method in class jsat.classifiers.svm.SBP
Sets the number of iterations to go through.
setIterations(int) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Sets the number of mini-batch iterations to perform
setIterations(int) - Method in class jsat.datatransform.featureselection.ReliefF
Sets the number of iterations of the ReliefF algorithm that will be run
setIterations(int) - Method in class jsat.datatransform.visualization.TSNE
Sets the desired number of gradient descent iterations to perform.
setIterations(int) - Method in class jsat.regression.RANSAC
Sets the number models that will be tested on the data set.
setIterativeRefine(boolean) - Method in class jsat.clustering.kmeans.GMeans
Sets whether or not the set of all cluster centers should be refined at every iteration.
setIterativeRefine(boolean) - Method in class jsat.clustering.kmeans.XMeans
Sets whether or not the set of all cluster centers should be refined at every iteration.
setK(int) - Method in class jsat.classifiers.knn.DANN
Sets the number of nearest neighbors to use when predicting
setK(int) - Method in class jsat.classifiers.linear.STGD
Sets the frequency of applying the gravity parameter to the weight vector.
setK(int) - Method in class jsat.classifiers.svm.extended.CPM
Sets the number of hyper planes to use when training.
setK(int) - Method in class jsat.clustering.FLAME
Sets the number of neighbors that will be considered in determining Cluster Supporting Points and assignment contributions.
setK(int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Sets the number of topics that LDA will try to learn
setKappa(double) - Method in class jsat.text.topicmodel.OnlineLDAsvi
The "forgetfulness" factor in the learning rate.
setKeepModels(boolean) - Method in class jsat.classifiers.ClassificationModelEvaluation
Set this to true in order to keep the trained models after evaluation.
setKeepModels(boolean) - Method in class jsat.regression.RegressionModelEvaluation
Set this to true in order to keep the trained models after evaluation.
setKernel(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.BOGD
Sets the kernel to use
setKernel(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.CSKLR
Set which kernel trick to use
setKernel(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.DUOL
Sets the kernel trick to use
setKernel(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the kernel to use
setKernel(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.OSKL
Sets the kernel to use
setKernel(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.Projectron
Sets the kernel trick to be used
setKernel(KernelTrick) - Method in class jsat.classifiers.svm.SupportVectorLearner
Sets the kernel trick to use
setKernel(KernelTrick) - Method in class jsat.classifiers.svm.SVMnoBias
 
setKernel(KernelTrick) - Method in class jsat.datatransform.kernel.KernelPCA
 
setKernel(KernelTrick) - Method in class jsat.datatransform.kernel.Nystrom
 
setKernel(KernelTrick) - Method in class jsat.regression.KernelRidgeRegression
Sets the kernel trick to use
setKernelFunction(KernelFunction) - Method in class jsat.classifiers.knn.LWL
Sets the kernel function that will be used to set the weights of each data point in the local set
setKernelFunction(KernelFunction) - Method in class jsat.distributions.multivariate.MetricKDE
 
setKernelTrick(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
Sets the kernel to use
setKernelTrick(KernelTrick) - Method in class jsat.classifiers.linear.kernelized.Forgetron
Sets the kernel trick to use
setKn(int) - Method in class jsat.classifiers.knn.DANN
Sets the number of nearest neighbors to use when adapting the distance metric.
setLabelInfo() - Method in class jsat.text.ClassificationHashedTextDataLoader
The classification label data stored in ClassificationHashedTextDataLoader.labelInfo must be set if the text loader is to return a classification data set.
setLabelInfo() - Method in class jsat.text.ClassificationTextDataLoader
The classification label data stored in ClassificationTextDataLoader.labelInfo must be set if the text loader is to return a classification data set.
setLambda(double) - Method in class jsat.classifiers.boosting.EmphasisBoost
λ controls the trade off between weighting the errors based on their distance to the margin and the quadratic error of the output.
setLambda(double) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the L2 regularization parameter used during learning.
setLambda(double) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Sets the regularization constant used for learning.
setLambda(double) - Method in class jsat.classifiers.svm.extended.CPM
Sets the regularization parameter λ to use.
setLambda(double) - Method in class jsat.classifiers.svm.extended.OnlineAMM
Sets the regularization parameter for this algorithm.
setLambda(double) - Method in class jsat.distributions.discrete.Poisson
Sets the average rate of the event occurring in a unit of time
setLambda(double) - Method in class jsat.math.optimization.ModifiedOWLQN
Sets the regularization term for the optimizer
setLambda(double) - Method in class jsat.regression.KernelRidgeRegression
Sets the regularization parameter used.
setLambda(double) - Method in class jsat.regression.RidgeRegression
Sets the regularization parameter used.
setLambda(double) - Method in class jsat.regression.StochasticRidgeRegression
Sets the regularization parameter used.
setLambda0(double) - Method in class jsat.classifiers.linear.LinearBatch
λ0 controls the L2 regularization penalty.
setLambda0(double) - Method in class jsat.classifiers.linear.LinearSGD
λ0 controls the L2 regularization penalty.
setLambda1(double) - Method in class jsat.classifiers.linear.LinearSGD
λ1 controls the L1 regularization penalty.
setLambdaMultipler(Vec) - Method in class jsat.math.optimization.ModifiedOWLQN
This method sets a vector that will contain a separate multiplier for lambda for each dimension of the problem.
setLayersActivation(List<ActivationLayer>) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the list of layer activations for all layers other than the input layer.
setLayerSizes(int...) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the array indicating the total number of layers in the network and the sizes of each layer.
setLearningDecay(DecayRate) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the decay rate to apply to the learning rate.
setLearningDecay(DecayRate) - Method in class jsat.classifiers.neuralnetwork.SOM
The rate the SOM learns decays over each iteration, and this defines the way in which the rate decays.
setLearningDecay(DecayRate) - Method in class jsat.regression.StochasticRidgeRegression
Sets the learning rate decay function to use.
setLearningRate(double) - Method in class jsat.classifiers.linear.STGD
Sets the learning rate to use
setLearningRate(double) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the learning rate of the algorithm.
setLearningRate(double) - Method in class jsat.regression.StochasticGradientBoosting
Sets the learning rate of the algorithm.
setLearningRate(double) - Method in class jsat.regression.StochasticRidgeRegression
Sets the learning rate used, and should be in the range (0, 1).
setLearningRateDecay(DecayRate) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the decay rate used to reduce the learning rate after each epoch.
setLearningRateDecay(DecayRate) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the decay rate used to adjust the learning rate after each epoch
setLength(int) - Method in class jsat.linear.ConstantVector
Sets the length of this vector.
setLength(int) - Method in class jsat.linear.SparseVector
Because sparce vectors do not have most value set, they can have their length increased, and sometimes decreased, without any effort.
setLineSearch(LineSearch) - Method in class jsat.math.optimization.BFGS
Sets the line search method used at each iteration
setLineSearch(LineSearch) - Method in class jsat.math.optimization.LBFGS
Sets the line search method used at each iteration
setLocalClassifier(Classifier) - Method in class jsat.classifiers.neuralnetwork.LVQLLC
Each prototype will create a classifier that is local to itself, and trained on the points that belong to the prototype and those near the border of the prototype.
setLocation(double) - Method in class jsat.distributions.Cauchy
 
setLocation(double) - Method in class jsat.distributions.Levy
Sets location of the Levy distribution.
setLooseBounds(boolean) - Method in class jsat.linear.vectorcollection.CoverTree
 
setLoss(LossFunc) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
Sets the loss function to use.
setLoss(LossFunc) - Method in class jsat.classifiers.linear.LinearBatch
Sets the loss function used for the model.
setLoss(LossFunc) - Method in class jsat.classifiers.linear.LinearSGD
Sets the loss function used for the model.
setLoss(StochasticSTLinearL1.Loss) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Sets the loss function to use.
setLVQMethod(LVQ.LVQVersion) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the version of LVQ used.
setM(double) - Method in class jsat.classifiers.bayesian.AODE
Sets the minimum prior observation value needed for an attribute combination to have enough support to be included in the final estimate.
setM(int) - Method in class jsat.driftdetectors.ADWIN
This parameter controls the trade off of space and accuracy for the sliding window.
setM(int) - Method in class jsat.math.optimization.LBFGS
Sets the number of history items to keep that are used to approximate the Hessian of the problem
setM(int) - Method in class jsat.math.optimization.ModifiedOWLQN
Sets the number of history items to keep that are used to approximate the Hessian of the problem
setMatch(T) - Method in class jsat.utils.ProbailityMatch
 
setMax(int) - Method in class jsat.distributions.discrete.UniformDiscrete
Sets the maximum value to occur from the distribution, must be greater than UniformDiscrete.getMin().
setMaxBudget(int) - Method in class jsat.distributions.kernels.KernelPoint
Sets the maximum budget for support vectors to allow.
setMaxBudget(int) - Method in class jsat.distributions.kernels.KernelPoints
Sets the maximum budget for support vectors to allow.
setMaxCoeff(double) - Method in class jsat.classifiers.linear.kernelized.BOGD
Sets the maximum allowed value for any support vector allowed.
setMaxDecrease(double) - Method in class jsat.datatransform.featureselection.SBS
Sets the maximum allowable decrease in accuracy (increase in error) from the previous set of features to the new current set.
setMaxDepth(int) - Method in class jsat.classifiers.trees.DecisionTree
Sets the maximum depth that this classifier may build trees to.
setMaxFeatures(int) - Method in class jsat.datatransform.featureselection.SBS
Sets the maximum number of features that must be selected
setMaxFeatures(int) - Method in class jsat.datatransform.featureselection.SFS
Sets the maximum number of features that must be selected
setMaxForestSize(int) - Method in class jsat.classifiers.trees.RandomForest
Sets the maximum number of trees to create for the forest.
setMaxHistory(int) - Method in class jsat.driftdetectors.BaseDriftDetector
Sets the maximum number of items to store in history.
setMaximumIterations(int) - Method in class jsat.clustering.kmeans.KernelKMeans
Sets the maximum number of iterations allowed
setMaximumIterations(int) - Method in class jsat.math.optimization.BFGS
 
setMaximumIterations(int) - Method in class jsat.math.optimization.LBFGS
 
setMaximumIterations(int) - Method in class jsat.math.optimization.ModifiedOWLQN
 
setMaximumIterations(int) - Method in interface jsat.math.optimization.Optimizer2
Sets the maximum number of iterations allowed for the optimization method
setMaxIncrease(double) - Method in class jsat.datatransform.featureselection.SFS
Sets the maximum allowable the maximum tolerable increase in error when a feature is added
setMaxIterations(int) - Method in class jsat.classifiers.boosting.AdaBoostM1
Sets the maximal number of boosting iterations that may be performed
setMaxIterations(int) - Method in class jsat.classifiers.boosting.EmphasisBoost
Sets the maximal number of boosting iterations that may be performed
setMaxIterations(int) - Method in class jsat.classifiers.boosting.LogitBoost
Sets the maximum number of iterations of boosting that can occur, giving the maximum number of base learners that may be trained
setMaxIterations(int) - Method in class jsat.classifiers.boosting.ModestAdaBoost
Sets the maximal number of boosting iterations that may be performed
setMaxIterations(int) - Method in class jsat.classifiers.knn.DANN
Sets the number of times a new distance metric will be created for each query.
setMaxIterations(int) - Method in class jsat.classifiers.linear.BBR
Sets the maximum number of iterations allowed before halting the algorithm early.
setMaxIterations(int) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Sets the maximum number of iterations the algorithm is allowed to run for.
setMaxIterations(int) - Method in class jsat.classifiers.neuralnetwork.SOM
Sets the maximum number of iterations that will be used to converge
setMaxIterations(int) - Method in class jsat.classifiers.svm.DCD
Sets the maximum number of iterations allowed through the whole training set.
setMaxIterations(int) - Method in class jsat.classifiers.svm.DCDs
Sets the maximum number of iterations allowed through the whole training set.
setMaxIterations(int) - Method in class jsat.classifiers.svm.PlattSMO
Sets the maximum number of iterations to perform of the training loop.
setMaxIterations(int) - Method in class jsat.clustering.FLAME
Sets the maximum number of iterations to perform.
setMaxIterations(int) - Method in class jsat.clustering.MeanShift
Sets the maximum number of iterations the algorithm will go through, terminating early if convergence has not occurred.
setMaxIterations(int) - Method in class jsat.clustering.PAM
 
setMaxIterations(int) - Method in class jsat.regression.StochasticGradientBoosting
Sets the maximum number of iterations used in SGB.
setMaxIters(int) - Method in class jsat.classifiers.linear.NewGLMNET
Sets the maximum number of training iterations for the algorithm, specifically the outer loop as mentioned in the original paper.
setMaxLeafSize(int) - Method in class jsat.linear.vectorcollection.VPTree
Sets the maximum leaf node size.
setMaxNorm(double) - Method in class jsat.classifiers.neuralnetwork.regularizers.Max2NormRegularizer
Sets the maximum allowed 2 norm for a single neuron's weights
setMaxParents(int) - Method in class jsat.classifiers.bayesian.graphicalmodel.K2NetworkLearner
Sets the maximum number of parents to allow a node when learning the network structure.
setMaxPCs(int) - Method in class jsat.datatransform.PCA
sets the maximum number of principal components to learn
setMaxPointError(double) - Method in class jsat.regression.RANSAC
Each data point not in the initial training set will be tested against.
setMaxScaled(double) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Sets the maximum value of any feature after scaling is applied.
setMaxTime(double) - Method in class jsat.math.decayrates.ExponetialDecay
Sets the maximum amount of time to allow in the rate decay.
setMaxTime(double) - Method in class jsat.math.decayrates.LinearDecay
Sets the maximum amount of time to allow in the rate decay.
setMaxTokenLength(int) - Method in class jsat.text.tokenizer.NaiveTokenizer
Sets the maximum allowed length for any token.
setMean(double) - Method in class jsat.classifiers.boosting.WaggingNormal
Sets the mean value used for the normal distribution
setMean(double) - Method in class jsat.distributions.Normal
 
setMeanCovariance(Vec, Matrix) - Method in class jsat.distributions.multivariate.NormalM
Sets the mean and covariance for this distribution.
setMeasurementError(double) - Method in class jsat.regression.OrdinaryKriging
Sets the measurement error used for Kriging, which is equivalent to altering the diagonal values of the covariance.
setMetric(DistanceMetric) - Method in class jsat.parameters.MetricParameter
Sets the distance metric that should be sued
setMin(int) - Method in class jsat.distributions.discrete.UniformDiscrete
Sets the minimum value to occur from the distribution, must be less than UniformDiscrete.getMax().
setMinClusterSize(int) - Method in class jsat.clustering.HDBSCAN
 
setMinClusterSize(int) - Method in class jsat.clustering.kmeans.GMeans
Sets the minimum size for splitting a cluster.
setMinClusterSize(int) - Method in class jsat.clustering.kmeans.XMeans
Sets the minimum size for splitting a cluster.
setMinFeatures(int) - Method in class jsat.datatransform.featureselection.SBS
Sets the minimum number of features that must be selected
setMinFeatures(int) - Method in class jsat.datatransform.featureselection.SFS
Sets the minimum number of features that must be selected
setMiniBatchSize(int) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the amount of data points used to form each gradient update.
setMiniBatchSize(int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Sets the number of data points used at a time to perform one update of the model parameters
setMinMax(int, int) - Method in class jsat.distributions.discrete.UniformDiscrete
Sets the minimum and maximum values at the same time, this is useful if setting them one at a time may have caused a conflict with the previous values
setMinMax(double, double) - Method in class jsat.distributions.LogUniform
Sets the minimum and maximum values for this distribution
setMinPoints(int) - Method in class jsat.clustering.HDBSCAN
 
setMinPts(int) - Method in class jsat.clustering.OPTICS
Sets the minimum number of points needed to compute the core distance.
setMinRate(double) - Method in class jsat.math.decayrates.ExponetialDecay
Sets the minimum learning rate to return
setMinRate(double) - Method in class jsat.math.decayrates.LinearDecay
Sets the minimum learning rate to return
setMinResultSize(int) - Method in class jsat.regression.RANSAC
RANSAC requires an initial model to be accurate enough to include a minimum number of inliers before being considered as a potentially good model.
setMinResultSplitSize(int) - Method in class jsat.classifiers.trees.DecisionStump
When a split is made, it may be that outliers cause the split to segregate a minority of points from the majority.
setMinResultSplitSize(int) - Method in class jsat.classifiers.trees.DecisionTree
When a split is made, it may be that outliers cause the split to segregate a minority of points from the majority.
setMinSamples(int) - Method in class jsat.classifiers.trees.DecisionTree
Sets the minimum number of samples needed at each step in order to continue branching
setMinScaled(double) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Sets the minimum value of any feature after scaling is applied.
setMinTokenLength(int) - Method in class jsat.text.tokenizer.NaiveTokenizer
Sets the minimum allowed token length.
setMode(CSKLR.UpdateMode) - Method in class jsat.classifiers.linear.kernelized.CSKLR
Sets what update mode should be used.
setMode(CSKLR.UpdateMode) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Sets what update mode should be used.
setMode(PassiveAggressive.Mode) - Method in class jsat.classifiers.linear.PassiveAggressive
Sets which version of the PA update is used.
setMode(SCW.Mode) - Method in class jsat.classifiers.linear.SCW
Controls which version of the algorithm is used
setMode(PassiveAggressive.Mode) - Method in class jsat.classifiers.linear.SPA
Sets which version of the PA update is used.
setMode(JLTransform.TransformMode) - Method in class jsat.datatransform.JLTransform
The JL transform uses a random matrix to project the data, and the mode controls which method is used to construct this matrix.
setModificationOne(boolean) - Method in class jsat.classifiers.svm.PlattSMO
Sets where or not modification one or two should be used when training.
setMomentum(double) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the non negative momentum used in training.
setMomentum(double) - Method in class jsat.math.optimization.stochastic.SGDMomentum
Sets the momentum for accumulating gradients.
setMScale(double) - Method in class jsat.classifiers.neuralnetwork.LVQ
When using LVQ.LVQVersion.LVQ3, a 3rd case exists where up to two learning vectors can be updated at the same time if they have the same class.
setMu(double) - Method in class jsat.distributions.Laplace
 
setMu(double) - Method in class jsat.distributions.Logistic
 
setNegativeSamples(int) - Method in class jsat.datatransform.visualization.LargeViz
Sets the number of negative neighbor samples to obtain for each data point.
setNegEntropyFunction(FastICA.NegEntropyFunc) - Method in class jsat.datatransform.FastICA
Sets the Negative Entropy function used to infer the base components.
setNeighborDecay(DecayRate) - Method in class jsat.classifiers.neuralnetwork.SOM
The range of effect each data point has decays with each iteration, and this defines the way in which the rate decays.
setNeighbors(int) - Method in class jsat.classifiers.knn.LWL
Sets the number of neighbors that will be used to create the local model
setNeighbors(int) - Method in class jsat.classifiers.knn.NearestNeighbour
Sets the number of neighbors to consult when making decisions
setNeighbors(int) - Method in class jsat.clustering.LSDBC
Sets the number of neighbors that will be considered when clustering data points
setNeighbors(int) - Method in class jsat.datatransform.featureselection.ReliefF
Sets the number of neighbors to use to infer feature importance from
setNeighbors(int) - Method in class jsat.datatransform.visualization.Isomap
Set the number of neighbors to consider for the initial graph in Isomap
setNoDigits(boolean) - Method in class jsat.text.tokenizer.NaiveTokenizer
Sets whether digits will be accepted in tokens or treated as "other" (not white space and not character).
setNormalize(boolean) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets whether or not to normalize the outputs of the neurons in the network so that the activations sum to one.
setNu(double) - Method in class jsat.classifiers.svm.SBP
The nu parameter for this SVM is not the same as the standard nu-SVM formulation, though it plays a similar role.
setNugget(double) - Method in class jsat.regression.OrdinaryKriging
Sets the nugget value passed to the variogram during training.
setNumberOfBins(int) - Method in class jsat.datatransform.NumericalToHistogram
Sets the maximum number of histogram bins to use when creating the categorical version of numeric features.
setNumCentroids(int) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets the number of centroids to learn for this model.
setNumericalHandling(NaiveBayes.NumericalHandeling) - Method in class jsat.classifiers.bayesian.NaiveBayes
Sets the method used by this instance for handling numerical attributes.
setNumericName(String, int) - Method in class jsat.DataSet
Sets the unique name associated with the i'th numeric attribute.
setObject(T) - Method in class jsat.parameters.ObjectParameter
Sets the parameter to the given object
setOmega(double) - Method in class jsat.distributions.kernels.PukKernel
Sets the omega parameter value, which controls the shape of the kernel
setOnlineVersion(boolean) - Method in class jsat.classifiers.svm.DCD
By default, Algorithm 1 is used.
setOptimizer(Optimizer2) - Method in class jsat.classifiers.linear.LinearBatch
Sets the method of batch optimization that will be used.
setOptionName(String, int) - Method in class jsat.classifiers.CategoricalData
Sets the name of one of the value options.
setOtherToWhiteSpace(boolean) - Method in class jsat.text.tokenizer.NaiveTokenizer
Sets whether or not all non letter and digit characters are treated as white space, or ignored completely.
setP(int) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets the nearest neighbor parameter.
setP(double) - Method in class jsat.distributions.discrete.Binomial
Sets the probability of a trial being a success
setP(double) - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
setPair(P) - Method in class jsat.classifiers.DataPointPair
 
setPair(P) - Method in class jsat.linear.VecPaired
 
setPath(int, TreeNodeVisitor) - Method in class jsat.classifiers.trees.DecisionTree.Node
 
setPath(int, TreeNodeVisitor) - Method in class jsat.classifiers.trees.TreeNodeVisitor
Optional operation!
This method, if supported, will set the path so that the child is set to the given value.
setPCSampling(boolean) - Method in class jsat.clustering.GapStatistic
By default the null distribution is sampled from the bounding hyper-cube of the dataset.
setPerplexity(double) - Method in class jsat.datatransform.visualization.LargeViz
Sets the target perplexity of the gaussian used over each data point.
setPerplexity(double) - Method in class jsat.datatransform.visualization.TSNE
Sets the target perplexity of the gaussian used over each data point.
setPhase1Learner(RBFNet.Phase1Learner) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets the method used for learning the centroids (or hidden units) of the network.
setPhase2Learner(RBFNet.Phase2Learner) - Method in class jsat.classifiers.neuralnetwork.RBFNet
Sets the method used for learning the bandwidths for each centroid in the network.
setPivotSelectionMethod(KDTree.PivotSelection) - Method in class jsat.linear.vectorcollection.KDTree.KDTreeFactory
 
setPredicting(CategoricalData) - Method in class jsat.classifiers.trees.DecisionStump
Sets the DecisionStump's predicting information.
setPreWhitened(boolean) - Method in class jsat.datatransform.FastICA
Controls where or not the implementation assumes the input data is already whitened.
setPrior(BBR.Prior) - Method in class jsat.classifiers.linear.BBR
Sets the regularizing prior used
setPrior(StochasticMultinomialLogisticRegression.Prior) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the prior used to perform regularization
setProb(int, double) - Method in class jsat.classifiers.CategoricalResults
Sets the probability that a sample belongs to a given category.
setProbability(double) - Method in class jsat.utils.ProbailityMatch
 
setProjectedDimension(int) - Method in class jsat.datatransform.JLTransform
Sets the target dimension size to use for the output
setProjectionStep(boolean) - Method in class jsat.classifiers.svm.Pegasos
Sets whether or not to use the projection step after each update per iteration
setPruneFrequency(int) - Method in class jsat.classifiers.svm.extended.OnlineAMM
Sets the frequency at which the weight vectors are pruned.
setPruningMethod(TreePruner.PruningMethod) - Method in class jsat.classifiers.trees.DecisionTree
Sets the method of pruning that will be used after tree construction
setR(double) - Method in class jsat.classifiers.linear.AROW
Sets the r parameter of AROW, which controls the regularization.
setR(double) - Method in class jsat.classifiers.linear.kernelized.CSKLR
Sets the maximal margin norm value for the algorithm.
setR(double) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
Sets the maximal margin norm value for the algorithm.
setR(double) - Method in class jsat.classifiers.linear.kernelized.OSKL
Sets the maximum allowed norm of the model.
setRandomFeatureCount(int) - Method in class jsat.classifiers.trees.RandomDecisionTree
Sets the number of random features to and use at each node of the decision tree
setRange(double, double) - Method in class jsat.datatransform.LinearTransform
Sets the min and max value to scale the data to.
setReal(double) - Method in class jsat.math.Complex
Sets the real value part of this complex number
setReflection(double) - Method in class jsat.math.optimization.NelderMead
Sets the reflection constant, which must be greater than 0
setRegressionTargetScore(RegressionScore) - Method in class jsat.parameters.ModelSearch
Sets the score to attempt to optimize when performing grid search on a regression problem.
setRegularization(double) - Method in class jsat.classifiers.linear.BBR
Sets the regularization penalty to use if the algorithm has not been set to choose one automatically.
setRegularization(double) - Method in class jsat.classifiers.linear.kernelized.BOGD
Sets the regularization parameter used for training.
setRegularization(double) - Method in class jsat.classifiers.linear.SCD
Sets the regularization constant used for learning.
setRegularization(double) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the coefficient applied to the regularization penalty at each update.
setRegularization(double) - Method in class jsat.classifiers.svm.Pegasos
Sets the regularization constant used for learning.
setRegularization(double) - Method in class jsat.classifiers.svm.PegasosK
Sets the amount of regularization to apply.
setRegularization(double) - Method in class jsat.datatransform.WhitenedPCA
 
setRegularizer(WeightRegularizer) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the method of regularizing the connections weights
setRemoveContinuousAttributes(boolean) - Method in class jsat.classifiers.trees.DecisionStump
Unlike categorical values, when a continuous attribute is selected to split on, not all values of the attribute become the same.
setRepresentativesPerClass(int) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the number of representatives to create for each class.
setReScale(boolean) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Sets whether or not scaling should be applied on th feature values of the training vectors.
setReTrain(boolean) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
It may be desirable to have the metric trained only once, and use the same parameters for all other training sessions of the learning algorithm using the metric.
setReuseSameCVFolds(boolean) - Method in class jsat.parameters.ModelSearch
Sets whether or not one set of CV folds is created and re used for every parameter combination (the default), or if a difference set of CV folds will be used for every parameter combination.
setRho(double) - Method in class jsat.classifiers.linear.kernelized.DUOL
Sets the "conflict" parameter, which controls how often double updates are performed.
setRho(double) - Method in class jsat.math.optimization.stochastic.AdaDelta
Sets the decay rate used by AdaDelta.
setRho(double) - Method in class jsat.math.optimization.stochastic.RMSProp
Sets the decay rate used by rmsprop.
setRidge(double) - Method in class jsat.datatransform.kernel.Nystrom
Sets the regularization parameter to add to the eigen values of the gram matrix.
setRMSE(boolean) - Method in class jsat.regression.evaluation.MeanSquaredError
 
setRounds(int) - Method in class jsat.classifiers.boosting.Bagging
Sets the number of rounds that bagging is done, meaning how many base learners are trained
setS(double) - Method in class jsat.distributions.Logistic
 
setSampleCount(int) - Method in class jsat.clustering.CLARA
Sets the number of times PAM will be applied to different samples from the data set.
setSamples(int) - Method in class jsat.clustering.GapStatistic
The Gap statistic is measured by sampling from a reference distribution and comparing with the given data set.
setSampleSize(int) - Method in class jsat.clustering.CLARA
Sets the number of samples CLARA should take from the data set to perform PAM on.
setScale(double) - Method in class jsat.distributions.Cauchy
 
setScale(double) - Method in class jsat.distributions.Levy
Sets the scale of the Levy distribution
setScale(double) - Method in class jsat.distributions.Rayleigh
 
setScale(double) - Method in class jsat.linear.ScaledVector
Explicitly sets the current scale to the given value

NOTE: If the scale is set to zero, the underlying base vector will be zeroed out, and the scale set to 1.
setScaleBandwidthFactor(double) - Method in class jsat.clustering.MeanShift
Sets the value by which the bandwidth of the MultivariateKDE will be scaled by.
setSecondItem(Y) - Method in class jsat.utils.Pair
 
setSeed(long) - Method in class jsat.utils.random.CMWC4096
 
setSeed(long) - Method in class jsat.utils.random.XOR128
 
setSeed(long) - Method in class jsat.utils.random.XOR96
 
setSeed(long) - Method in class jsat.utils.random.XORWOW
 
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the seed selection method used to select the initial learning vectors
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.clustering.EMGaussianMixture
Sets the method of seed selection to use for this algorithm.
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.clustering.kmeans.GMeans
 
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.clustering.kmeans.KMeans
Sets the method of seed selection to use for this algorithm.
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
Sets the method of selecting the initial data points to seed the clustering algorithm.
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.clustering.kmeans.XMeans
 
setSeedSelection(SeedSelectionMethods.SeedSelection) - Method in class jsat.clustering.PAM
Sets the method of seed selection used by this algorithm
setSelectionCount(int) - Method in class jsat.classifiers.trees.ExtraTree
The ExtraTree will select the best of a random subset of features at each level, this sets the number of random features to select.
setSelfTurned(boolean) - Method in class jsat.classifiers.linear.kernelized.Forgetron
Sets whether or not the self-tuned variant of the Forgetron is used, the default is true
setShape(double) - Method in class jsat.distributions.MaxwellBoltzmann
 
setShift(double) - Method in class jsat.linear.ShiftedVec
Directly alters the shift value used for this vector.
setShrink(double) - Method in class jsat.math.optimization.NelderMead
Sets the shrinkage constant, which must be in the range (0, 1)
setSigma(double) - Method in class jsat.datatransform.kernel.RFF_RBF
Sets the σ parameter of the RBF kernel that is being approximated.
setSigma(double) - Method in class jsat.distributions.kernels.GeneralRBFKernel
Sets the kernel width parameter, which must be a positive value.
setSigma(double) - Method in class jsat.distributions.kernels.PukKernel
Sets the sigma parameter value, which controls the width of the kernel
setSigma(double) - Method in class jsat.distributions.kernels.RBFKernel
Sets the sigma parameter, which must be a positive value
setSimultaniousTraining(boolean) - Method in class jsat.classifiers.boosting.Bagging
Bagging produces multiple base learners.
setSmoothing(double) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
Sets the amount of smoothing applied to the model.
setSmoothing(double) - Method in class jsat.math.ExponentialMovingStatistics
Sets the smoothing parameter value to use.
setSolverMode(RidgeRegression.SolverMode) - Method in class jsat.regression.RidgeRegression
Sets which solver is to be used
setSomHeight(int) - Method in class jsat.classifiers.neuralnetwork.SOM
Sets the height of the SOM lattice to create
setSomWidth(int) - Method in class jsat.classifiers.neuralnetwork.SOM
Sets the width of the SOM lattice to create
setSparceInput(boolean) - Method in class jsat.classifiers.bayesian.NaiveBayes
Tells the Naive Bayes classifier to assume the importance of sparseness in the numerical values.
setSparse(boolean) - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
Sets whether or not that classifier should behave as if the input vectors are sparse.
setStandardDeviations(double) - Method in class jsat.classifiers.boosting.WaggingNormal
Sets the standard deviations used for the normal distribution
setStandardized(boolean) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets whether or not to perform implicit standardization of the feature values when performing regularization by the prior.
setStartLevel(int) - Method in class jsat.classifiers.svm.DCSVM
The DC-SVM algorithm works by creating a hierarchy of levels, and iteratively refining the solution from one level to the next.
setStndDev(double) - Method in class jsat.classifiers.neuralnetwork.initializers.GaussianNormalInit
Sets the standard deviation of the distribution that will be sampled from
setStndDev(double) - Method in class jsat.distributions.Normal
 
setStndDevs(double) - Method in class jsat.clustering.FLAME
Sets the number of standard deviations away from the mean density a candidate outlier must be to be confirmed as an outlier.
setStopAfterFail(boolean) - Method in class jsat.clustering.kmeans.XMeans
Each new cluster will be tested for improvement according to the BIC metric.
setStoppingDist(double) - Method in class jsat.classifiers.neuralnetwork.LVQ
The algorithm terminates early if the learning vectors are only moving small distances.
setStopSize(int) - Method in class jsat.classifiers.trees.ExtraTree
Sets the stopping size for tree growth.
setStoreMeans(boolean) - Method in class jsat.clustering.kmeans.KMeans
If set to true the computed means will be stored after clustering is completed, and can then be retrieved using KMeans.getMeans().
setStoreMeans(boolean) - Method in class jsat.clustering.kmeans.MiniBatchKMeans
If set to true the computed means will be stored after clustering is completed, and can then be retrieved using MiniBatchKMeans.getMeans().
setStoreMedoids(boolean) - Method in class jsat.clustering.PAM
If set to true the computed medoids will be stored after clustering is completed, and can then be retrieved using PAM.getMedoids().
setSubEpochs(int) - Method in class jsat.classifiers.svm.extended.AMM
Each iteration of the batch AMM algorithm requires at least one epoch over the training set.
setTargetDimension(int) - Method in class jsat.datatransform.visualization.Isomap
 
setTargetDimension(int) - Method in class jsat.datatransform.visualization.LargeViz
 
setTargetDimension(int) - Method in class jsat.datatransform.visualization.MDS
 
setTargetDimension(int) - Method in class jsat.datatransform.visualization.TSNE
 
setTargetDimension(int) - Method in interface jsat.datatransform.visualization.VisualizationTransform
Sets the target dimension to embed new dataset to.
setTargetValue(int, double) - Method in class jsat.regression.RegressionDataSet
Sets the target regression value associated with a given data point
setTau(double) - Method in class jsat.math.decayrates.InverseDecay
Controls the rate early in time, but has a decreasing impact on the rate returned as time goes forward.
setTau(double) - Method in class jsat.math.decayrates.PowerDecay
Controls the rate early in time, but has a decreasing impact on the rate returned as time goes forward.
setTau0(double) - Method in class jsat.text.topicmodel.OnlineLDAsvi
A learning rate constant to control the influence of early iterations on the solution.
setTestProportion(double) - Method in class jsat.classifiers.trees.DecisionTree
Sets the proportion of the training set that is put aside to perform pruning with.
setTestUsingData(Vec) - Method in interface jsat.testing.onesample.OneSampleTest
Sets the statistics that will be tested against an alternate hypothesis.
setTestUsingData(Vec) - Method in class jsat.testing.onesample.TTest
 
setTestUsingData(Vec) - Method in class jsat.testing.onesample.ZTest
 
setTestVars(double[]) - Method in interface jsat.testing.onesample.OneSampleTest
 
setTestVars(double[]) - Method in class jsat.testing.onesample.TTest
 
setTestVars(double[]) - Method in class jsat.testing.onesample.ZTest
 
setThreshold(double) - Method in class jsat.classifiers.linear.STGD
Sets the threshold for a coefficient value to avoid regularization.
setThreshold(double) - Method in class jsat.datatransform.PCA
 
setTolerance(double) - Method in class jsat.classifiers.linear.BBR
Sets the convergence tolerance target.
setTolerance(double) - Method in class jsat.classifiers.linear.LinearBatch
Sets the convergence tolerance to user for training.
setTolerance(double) - Method in class jsat.classifiers.linear.NewGLMNET
Sets the tolerance parameter for convergence.
setTolerance(double) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets the tolerance that determines when the training stops early because the change has become too insignificant.
setTolerance(double) - Method in class jsat.classifiers.svm.DCDs
Sets the tolerance for the stopping condition when training, a small value near zero allows training to stop early when little to no additional convergence is possible.
setTolerance(double) - Method in class jsat.classifiers.svm.PlattSMO
Sets the tolerance for the solution.
setTolerance(double) - Method in class jsat.classifiers.svm.SVMnoBias
Sets the tolerance for the solution.
setTolerance(double) - Method in class jsat.datatransform.visualization.MDS
Sets the tolerance parameter for determining convergence.
setTrainFinalModel(boolean) - Method in class jsat.parameters.ModelSearch
If true (the default) the model that was found to be best is trained on the whole data set at the end.
setTrainingProportion(double) - Method in class jsat.regression.StochasticGradientBoosting
The GB version uses the whole data set at each iteration.
setTrainModelsInParallel(boolean) - Method in class jsat.parameters.ModelSearch
When set to true (the default) parallelism is obtained by training as many models in parallel as possible.
setTrials(int) - Method in class jsat.distributions.discrete.Binomial
The number of trials for the distribution
setTrials(int) - Method in class jsat.parameters.RandomSearch
Sets the number of trials or samples that will be taken.
setTrustH0(boolean) - Method in class jsat.clustering.kmeans.GMeans
Each new cluster will be tested for normality, with the null hypothesis H0 being that the cluster is normal.
setUniformSampling(boolean) - Method in class jsat.classifiers.linear.kernelized.BOGD
Sets whether or not support vectors should be removed by uniform sampling or not.
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.bayesian.AODE
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.bayesian.ODE
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
setUp(CategoricalData[], int) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.ALMA2
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.AROW
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.BOGD
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.DUOL
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
setUp(CategoricalData[], int) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.OSKL
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.kernelized.Projectron
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.LinearSGD
 
setUp(CategoricalData[], int) - Method in class jsat.classifiers.linear.LinearSGD
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.NHERD
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.PassiveAggressive
 
setUp(CategoricalData[], int) - Method in class jsat.classifiers.linear.PassiveAggressive
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.ROMMA
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.SCW
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.SPA
 
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.linear.STGD
 
setUp(CategoricalData[], int) - Method in class jsat.classifiers.linear.STGD
 
setup() - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Prepares the network by creating all needed structure, initializing weights, and preparing it for updates
setUp(CategoricalData[], int, CategoricalData) - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
setUp(CategoricalData[], int, CategoricalData) - Method in interface jsat.classifiers.UpdateableClassifier
Prepares the classifier to begin learning from its UpdateableClassifier.update(jsat.classifiers.DataPoint, int) method.
setup(int, int[], Vec) - Method in class jsat.clustering.kmeans.KernelKMeans
Sets up the internal structure for KenrelKMeans.
setUp(DataSet, Set<Integer>, Set<Integer>) - Method in class jsat.datatransform.RemoveAttributeTransform
Sets up the Remove Attribute Transform properly
setup(int) - Method in class jsat.math.optimization.stochastic.AdaDelta
 
setup(int) - Method in class jsat.math.optimization.stochastic.AdaGrad
 
setup(int) - Method in class jsat.math.optimization.stochastic.Adam
 
setup(int) - Method in interface jsat.math.optimization.stochastic.GradientUpdater
Sets up this updater to update a weight vector of dimension d by a gradient of the same dimension
setup(int) - Method in class jsat.math.optimization.stochastic.NAdaGrad
 
setup(int) - Method in class jsat.math.optimization.stochastic.RMSProp
 
setup(int) - Method in class jsat.math.optimization.stochastic.Rprop
 
setup(int) - Method in class jsat.math.optimization.stochastic.SGDMomentum
 
setup(int) - Method in class jsat.math.optimization.stochastic.SimpleSGD
 
setUp(CategoricalData[], int) - Method in class jsat.regression.KernelRLS
 
setUp(CategoricalData[], int) - Method in interface jsat.regression.UpdateableRegressor
Prepares the classifier to begin learning from its UpdateableRegressor.update(jsat.classifiers.DataPoint, double) method.
setUpTransform(SingularValueDecomposition) - Method in class jsat.datatransform.WhitenedPCA
Creates the transform matrix to be used when converting data points.
setUpTransform(SingularValueDecomposition) - Method in class jsat.datatransform.WhitenedZCA
 
setUseAverageModel(boolean) - Method in class jsat.classifiers.linear.kernelized.OSKL
Sets whether or not the average of all intermediate models is used or if the most recent model is used when performing classification
setUseBias(boolean) - Method in class jsat.classifiers.linear.ALMA2
Sets whether or not an implicit bias term will be added to the data set
setUseBias(boolean) - Method in class jsat.classifiers.linear.BBR
Sets whether or not an implicit bias term should be added to the model.
setUseBias(boolean) - Method in class jsat.classifiers.linear.LinearSGD
Sets whether or not an implicit bias term will be added to the data set
setUseBias(boolean) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
Sets whether or not an implicit bias term should be added to the model.
setUseBias(boolean) - Method in class jsat.classifiers.linear.NewGLMNET
Controls whether or not an un-regularized bias term is added to the model.
setUseBias(boolean) - Method in class jsat.classifiers.linear.ROMMA
Sets whether or not an implicit bias term will be added to the data set
setUseBias(boolean) - Method in class jsat.classifiers.linear.SPA
Sets whether or not the implementation will use an implicit bias term appended to the inputs or not.
setUseBias(boolean) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Sets whether or not to learn the bias term for a model.
setUseBias(boolean) - Method in class jsat.classifiers.svm.DCD
Sets whether or not an implicit bias term should be added to the inputs.
setUseBias(boolean) - Method in class jsat.classifiers.svm.DCDs
Sets whether or not an implicit bias term should be added to the inputs.
setUseBiasTerm(boolean) - Method in class jsat.classifiers.linear.LinearBatch
 
setUseDefaultSelectionCount(boolean) - Method in class jsat.classifiers.trees.ERTrees
Sets whether or not to use the default heuristic for the number of random features to select as candidates for each node.
setUseDefaultStopSize(boolean) - Method in class jsat.classifiers.trees.ERTrees
Sets whether or not to us the default heuristic for the number of points to force a new node to be a leaf.
setUseDenseSparse(boolean) - Method in class jsat.clustering.kmeans.ElkanKMeans
Sets whether or not to use DenseSparseMetric when computing.
setUseL1(boolean) - Method in class jsat.classifiers.svm.DCD
Determines whether or not to use the L1 or L2 SVM
setUseL1(boolean) - Method in class jsat.classifiers.svm.DCDs
Determines whether or not to use the L1 or L2 SVM
setUseLowerCase(boolean) - Method in class jsat.text.tokenizer.NaiveTokenizer
Sets whether or not characters are made to be lower case or not
setUseMarginUpdates(boolean) - Method in class jsat.classifiers.linear.kernelized.Projectron
Sets whether or not projection updates will be performed for margin errors.
setUseOutOfBagError(boolean) - Method in class jsat.classifiers.trees.RandomForest
Sets whether or not to compute the out of bag error during training
setUseOutOfBagImportance(boolean) - Method in class jsat.classifiers.trees.RandomForest
Sets whether or not to compute the out of bag importance of each feature during training.
setUsePriors(boolean) - Method in class jsat.classifiers.bayesian.BestClassDistribution
Controls whether or not the priors will be used for classification.
setUseWarmStarts(boolean) - Method in class jsat.parameters.GridSearch
Sets whether or not warm starts are used, but only if the model in use supports warm starts.
setUsingData(List<V>) - Method in class jsat.clustering.EMGaussianMixture
 
setUsingData(DataSet) - Method in class jsat.clustering.EMGaussianMixture
 
setUsingData(DataSet, ExecutorService) - Method in class jsat.clustering.EMGaussianMixture
 
setUsingData(List<V>, ExecutorService) - Method in class jsat.clustering.EMGaussianMixture
 
setUsingData(Vec) - Method in class jsat.distributions.Beta
 
setUsingData(Vec) - Method in class jsat.distributions.Cauchy
 
setUsingData(Vec) - Method in class jsat.distributions.ChiSquared
 
setUsingData(Vec) - Method in class jsat.distributions.ContinuousDistribution
Attempts to set the variables used by this distribution based on population sample data, assuming the sample data is from this type of distribution.
setUsingData(Vec) - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
setUsingData(Vec) - Method in class jsat.distributions.Exponential
 
setUsingData(Vec) - Method in class jsat.distributions.FisherSendor
 
setUsingData(Vec) - Method in class jsat.distributions.Gamma
 
setUsingData(Vec) - Method in class jsat.distributions.Kolmogorov
 
setUsingData(Vec) - Method in class jsat.distributions.Laplace
 
setUsingData(Vec) - Method in class jsat.distributions.Levy
 
setUsingData(Vec) - Method in class jsat.distributions.Logistic
 
setUsingData(Vec) - Method in class jsat.distributions.LogNormal
 
setUsingData(Vec) - Method in class jsat.distributions.LogUniform
 
setUsingData(Vec) - Method in class jsat.distributions.MaxwellBoltzmann
 
setUsingData(List<V>) - Method in class jsat.distributions.multivariate.Dirichlet
 
setUsingData(List<V>, double) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the KDE to model the density of the given data set with the specified bandwidth
setUsingData(List<V>, double, ExecutorService) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the KDE to model the density of the given data set with the specified bandwidth
setUsingData(List<V>, int) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the KDE to model the density of the given data set by estimating the bandwidth by using the k nearest neighbors of each data point.
setUsingData(List<V>, int, ExecutorService) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the KDE to model the density of the given data set by estimating the bandwidth by using the k nearest neighbors of each data point.
setUsingData(List<V>, int, double) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the KDE to model the density of the given data set by estimating the bandwidth by using the k nearest neighbors of each data data point.
setUsingData(List<V>, int, double, ExecutorService) - Method in class jsat.distributions.multivariate.MetricKDE
Sets the KDE to model the density of the given data set by estimating the bandwidth by using the k nearest neighbors of each data data point.
setUsingData(List<V>) - Method in class jsat.distributions.multivariate.MetricKDE
 
setUsingData(List<V>, ExecutorService) - Method in class jsat.distributions.multivariate.MetricKDE
 
setUsingData(List<V>) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Sets the parameters of the distribution to attempt to fit the given list of vectors.
setUsingData(List<V>, ExecutorService) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Sets the parameters of the distribution to attempt to fit the given list of vectors.
setUsingData(DataSet) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Sets the parameters of the distribution to attempt to fit the given list of data points.
setUsingData(DataSet, ExecutorService) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Sets the parameters of the distribution to attempt to fit the given list of data points.
setUsingData(DataSet) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
setUsingData(DataSet, ExecutorService) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
setUsingData(List<V>, ExecutorService) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
setUsingData(List<V>) - Method in class jsat.distributions.multivariate.NormalM
 
setUsingData(List<V>) - Method in class jsat.distributions.multivariate.ProductKDE
 
setUsingData(List<V>) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
 
setUsingData(Vec) - Method in class jsat.distributions.Normal
 
setUsingData(Vec) - Method in class jsat.distributions.Pareto
 
setUsingData(Vec) - Method in class jsat.distributions.Rayleigh
 
setUsingData(Vec) - Method in class jsat.distributions.StudentT
 
setUsingData(Vec) - Method in class jsat.distributions.TruncatedDistribution
 
setUsingData(Vec) - Method in class jsat.distributions.Uniform
 
setUsingData(Vec) - Method in class jsat.distributions.Weibull
 
setUsingDataList(List<DataPoint>) - Method in class jsat.clustering.EMGaussianMixture
 
setUsingDataList(List<DataPoint>, ExecutorService) - Method in class jsat.clustering.EMGaussianMixture
 
setUsingDataList(List<DataPoint>) - Method in class jsat.distributions.multivariate.Dirichlet
 
setUsingDataList(List<DataPoint>) - Method in class jsat.distributions.multivariate.MetricKDE
 
setUsingDataList(List<DataPoint>, ExecutorService) - Method in class jsat.distributions.multivariate.MetricKDE
 
setUsingDataList(List<DataPoint>) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Sets the parameters of the distribution to attempt to fit the given list of data points.
setUsingDataList(List<DataPoint>, ExecutorService) - Method in interface jsat.distributions.multivariate.MultivariateDistribution
Sets the parameters of the distribution to attempt to fit the given list of data points.
setUsingDataList(List<DataPoint>, ExecutorService) - Method in class jsat.distributions.multivariate.MultivariateDistributionSkeleton
 
setUsingDataList(List<DataPoint>) - Method in class jsat.distributions.multivariate.NormalM
 
setUsingDataList(List<DataPoint>) - Method in class jsat.distributions.multivariate.ProductKDE
 
setUsingDataList(List<DataPoint>) - Method in class jsat.distributions.multivariate.SymmetricDirichlet
 
setValue(double) - Method in class jsat.linear.IndexValue
Sets the value associated with the index
setValue(boolean) - Method in class jsat.parameters.BooleanParameter
Sets the value for this parameter.
setValue(double) - Method in class jsat.parameters.DoubleParameter
Sets the value for this parameter.
setValue(int) - Method in class jsat.parameters.IntParameter
Sets the value for this parameter.
setVariable(String, double) - Method in class jsat.distributions.Beta
 
setVariable(String, double) - Method in class jsat.distributions.Cauchy
 
setVariable(String, double) - Method in class jsat.distributions.ChiSquared
 
setVariable(String, double) - Method in class jsat.distributions.ContinuousDistribution
Sets one of the variables of this distribution by the name.
setVariable(String, double) - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
setVariable(String, double) - Method in class jsat.distributions.Exponential
 
setVariable(String, double) - Method in class jsat.distributions.FisherSendor
 
setVariable(String, double) - Method in class jsat.distributions.Gamma
 
setVariable(String, double) - Method in class jsat.distributions.Kolmogorov
 
setVariable(String, double) - Method in class jsat.distributions.Laplace
 
setVariable(String, double) - Method in class jsat.distributions.Levy
 
setVariable(String, double) - Method in class jsat.distributions.Logistic
 
setVariable(String, double) - Method in class jsat.distributions.LogNormal
 
setVariable(String, double) - Method in class jsat.distributions.LogUniform
 
setVariable(String, double) - Method in class jsat.distributions.MaxwellBoltzmann
 
setVariable(String, double) - Method in class jsat.distributions.Normal
 
setVariable(String, double) - Method in class jsat.distributions.Pareto
 
setVariable(String, double) - Method in class jsat.distributions.Rayleigh
 
setVariable(String, double) - Method in class jsat.distributions.StudentT
 
setVariable(String, double) - Method in class jsat.distributions.TruncatedDistribution
 
setVariable(String, double) - Method in class jsat.distributions.Uniform
 
setVariable(String, double) - Method in class jsat.distributions.Weibull
 
setVCF(VectorCollectionFactory<VecPaired<Vec, Integer>>) - Method in class jsat.clustering.OPTICS
Sets the VectorCollectionFactory used to produce acceleration structures for the OPTICS computation.
setVecCollectionFactory(VectorCollectionFactory<VecPaired<Vec, Integer>>) - Method in class jsat.classifiers.neuralnetwork.LVQ
Sets the vector collection factory to use when storing the final learning vectors
setVector(V) - Method in class jsat.linear.VecPaired
 
setVectorCollectionFactory(VectorCollectionFactory<VecPaired<Vec, Integer>>) - Method in class jsat.clustering.FLAME
Sets the vector collection factory used to accelerate the nearest neighbor search.
setVectorCollectionFactory(VectorCollectionFactory<VecPaired<Vec, Integer>>) - Method in class jsat.clustering.LSDBC
Sets the vector collection factory used for acceleration of neighbor searches.
setVocabSize(int) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Sets the vocabulary size for LDA, which is the number of dimensions in the input feature vectors.
setWarmModels(Classifier...) - Method in class jsat.classifiers.ClassificationModelEvaluation
Sets the models that will be used for warm starting training.
setWarmModels(Regressor...) - Method in class jsat.regression.RegressionModelEvaluation
Sets the models that will be used for warm starting training.
setWarningThreshold(double) - Method in class jsat.driftdetectors.DDM
Sets the multiplier on the standard deviation that must be exceeded to initiate a warning state.
setWeakLearner(Classifier) - Method in class jsat.classifiers.boosting.AdaBoostM1
Sets the weak learner used during training.
setWeakLearner(Classifier) - Method in class jsat.classifiers.boosting.ArcX4
Sets the weak learner used at each iteration of learning
setWeakLearner(Classifier) - Method in class jsat.classifiers.boosting.EmphasisBoost
Sets the weak learner used during training.
setWeakLearner(Classifier) - Method in class jsat.classifiers.boosting.ModestAdaBoost
Sets the weak learner used during training.
setWeakLearner(Classifier) - Method in class jsat.classifiers.boosting.Wagging
Sets the weak learner used for classification.
setWeakLearner(Regressor) - Method in class jsat.classifiers.boosting.Wagging
Sets the weak learner used for regressions .
setWeight(double) - Method in class jsat.classifiers.DataPoint
Set the weight that this data point should carry.
setWeight(Vec) - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
Sets the weight vector to use for the distance function
setWeight(List<? extends Vec>, List<Integer>) - Method in class jsat.text.wordweighting.BinaryWordPresent
 
setWeight(List<? extends Vec>, List<Integer>) - Method in class jsat.text.wordweighting.OkapiBM25
 
setWeight(List<? extends Vec>, List<Integer>) - Method in class jsat.text.wordweighting.TfIdf
 
setWeight(List<? extends Vec>, List<Integer>) - Method in class jsat.text.wordweighting.WordCount
 
setWeight(List<? extends Vec>, List<Integer>) - Method in class jsat.text.wordweighting.WordWeighting
Prepares the word weighting to be performed on a data set.
setWeightDecay(double) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets the weight decay used for each update.
setWeightInit(WeightInitializer) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Sets the method used to initialize matrix connection weights
setWeightInitialization(BackPropagationNet.WeightInitialization) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
Sets how the weights are initialized before training starts
setX(X) - Method in class jsat.utils.Tuple3
 
setXi(double) - Method in class jsat.clustering.OPTICS
Sets the xi value used in OPTICS.ExtractionMethod.XI_STEEP_ORIGINAL to produce cluster results.
setXm(double) - Method in class jsat.distributions.Pareto
 
setY(Y) - Method in class jsat.utils.Tuple3
 
setZ(Z) - Method in class jsat.utils.Tuple3
 
setzMax(double) - Method in class jsat.classifiers.boosting.LogitBoost
Sets the penalty bound for miss-classification of results.
SFS - Class in jsat.datatransform.featureselection
Sequential Forward Selection (SFS) is a greedy method of selecting a subset of features to use for prediction.
SFS(int, int, Classifier, double) - Constructor for class jsat.datatransform.featureselection.SFS
Performs SFS feature selection for a classification problem
SFS(int, int, ClassificationDataSet, Classifier, int, double) - Constructor for class jsat.datatransform.featureselection.SFS
Performs SFS feature selection for a classification problem
SFS(int, int, Regressor, double) - Constructor for class jsat.datatransform.featureselection.SFS
Creates SFS feature selection for a regression problem
SFS(int, int, RegressionDataSet, Regressor, int, double) - Constructor for class jsat.datatransform.featureselection.SFS
Performs SFS feature selection for a regression problem
SFSSelectFeature(Set<Integer>, DataSet, Set<Integer>, Set<Integer>, Set<Integer>, Set<Integer>, Object, int, Random, double[], int) - Static method in class jsat.datatransform.featureselection.SFS
Attempts to add one feature to the list of features while increasing or maintaining the current accuracy
SGDMomentum - Class in jsat.math.optimization.stochastic
Performs unaltered Stochastic Gradient Decent updates using either standard or Nestrov momentum.
SGDMomentum(double, boolean) - Constructor for class jsat.math.optimization.stochastic.SGDMomentum
Creates a new SGD with Momentum learner
SGDMomentum(double) - Constructor for class jsat.math.optimization.stochastic.SGDMomentum
Creates a new SGD with Nestrov Momentum learner
SGDMomentum(SGDMomentum) - Constructor for class jsat.math.optimization.stochastic.SGDMomentum
Copy constructor
SGDNetworkTrainer - Class in jsat.classifiers.neuralnetwork
This class provides a highly configurable and generalized method of training a neural network using Stochastic Gradient Decent.

Note, the API of this class may change in the future.
SGDNetworkTrainer() - Constructor for class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Creates a new SGD network training that uses dropout
SGDNetworkTrainer(SGDNetworkTrainer) - Constructor for class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Copy constructor
shallowClone() - Method in class jsat.classifiers.ClassificationDataSet
 
shallowClone() - Method in class jsat.DataSet
Returns a new version of this data set that is of the same type, and contains a different list pointing to the same data points.
shallowClone() - Method in class jsat.regression.RegressionDataSet
 
shallowClone() - Method in class jsat.SimpleDataSet
 
ShiftedVec - Class in jsat.linear
A wrapper for a vector that represents the vector added with a scalar value.
ShiftedVec(Vec, double) - Constructor for class jsat.linear.ShiftedVec
Creates a new vector represented as base+shift
shuffle(int[], Random) - Static method in class jsat.utils.ArrayUtils
Swaps values in the given array
shuffle(int[], int, int, Random) - Static method in class jsat.utils.ArrayUtils
Shuffles the values in the given array
shutdown() - Method in class jsat.utils.FakeExecutor
 
shutdownNow() - Method in class jsat.utils.FakeExecutor
 
sigma - Static variable in class jsat.text.GreekLetters
 
sigmaToGamma(double) - Static method in class jsat.distributions.kernels.RBFKernel
Another common (equivalent) form of the RBF kernel is k(x, y) = exp(-γ||x-y||2).
SigmoidKernel - Class in jsat.distributions.kernels
Provides an implementation of the Sigmoid (Hyperbolic Tangent) Kernel, which is of the form:
k(x, y) = tanh(alpha * < x, y > +c)
Technically, this kernel is not positive definite.
SigmoidKernel(double, double) - Constructor for class jsat.distributions.kernels.SigmoidKernel
Creates a new Sigmoid Kernel
SigmoidKernel(double) - Constructor for class jsat.distributions.kernels.SigmoidKernel
Creates a new Sigmoid Kernel with a bias term of 1
SigmoidLayer - Class in jsat.classifiers.neuralnetwork.activations
This layer provides the standard Sigmoid activation f(x) = 1/(1+exp(-x))
SigmoidLayer() - Constructor for class jsat.classifiers.neuralnetwork.activations.SigmoidLayer
 
SimpleBinaryClassMetric - Class in jsat.classifiers.evaluation
This is a base class for scores that can be computed from simple counts of the true positives, true negatives, false positives, and false negatives.
SimpleBinaryClassMetric() - Constructor for class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
SimpleBinaryClassMetric(SimpleBinaryClassMetric) - Constructor for class jsat.classifiers.evaluation.SimpleBinaryClassMetric
 
SimpleDataSet - Class in jsat
SimpleData Set is a basic implementation of a data set.
SimpleDataSet(List<DataPoint>) - Constructor for class jsat.SimpleDataSet
 
SimpleDataSet(CategoricalData[], int) - Constructor for class jsat.SimpleDataSet
 
SimpleHAC - Class in jsat.clustering.hierarchical
Provides a naive implementation of hierarchical agglomerative clustering (HAC).
SimpleHAC(ClusterDissimilarity) - Constructor for class jsat.clustering.hierarchical.SimpleHAC
 
SimpleHAC(SimpleHAC) - Constructor for class jsat.clustering.hierarchical.SimpleHAC
Copy constructor
simpleInsert(V) - Method in class jsat.linear.vectorcollection.CoverTree
 
simpleInsert(CoverTree<V>.TreeNode, int) - Method in class jsat.linear.vectorcollection.CoverTree
 
simpleInsert_(CoverTree<V>.TreeNode, int) - Method in class jsat.linear.vectorcollection.CoverTree
prerequisites: d(p,x) ≤ covdist(p)
SimpleLinearRegression - Class in jsat.math
 
SimpleLinearRegression() - Constructor for class jsat.math.SimpleLinearRegression
 
SimpleList<E> - Class in jsat.utils
An alternative implementation of an ArrayList.
SimpleList(int) - Constructor for class jsat.utils.SimpleList
Creates a new SimpleList
SimpleList() - Constructor for class jsat.utils.SimpleList
Creates a new SimpleList
SimpleList(Collection<? extends E>) - Constructor for class jsat.utils.SimpleList
Creates a new SimpleList
SimpleSGD - Class in jsat.math.optimization.stochastic
Performs unaltered Stochastic Gradient Decent updates computing x = x- η grad

Because the SimpleSGD requires no internal state, it is not necessary to call SimpleSGD.setup(int).
SimpleSGD() - Constructor for class jsat.math.optimization.stochastic.SimpleSGD
Creates a new SGD updater
SimpleWeightVectorModel - Interface in jsat
This interface is for multi-class classification problems where there may be K or K-1 weight vectors for K classes.
SingleLinkDissimilarity - Class in jsat.clustering.dissimilarity
Measures the dissimilarity of two clusters by returning the minimum dissimilarity between the two closest data points from the clusters, ie: the minimum distance needed to link the two clusters.
SingleLinkDissimilarity() - Constructor for class jsat.clustering.dissimilarity.SingleLinkDissimilarity
Creates a new SingleLinkDissimilarity using the EuclideanDistance
SingleLinkDissimilarity(DistanceMetric) - Constructor for class jsat.clustering.dissimilarity.SingleLinkDissimilarity
Creates a new SingleLinkDissimilarity
SingleLinkDissimilarity(SingleLinkDissimilarity) - Constructor for class jsat.clustering.dissimilarity.SingleLinkDissimilarity
Copy constructor
SingleWeightVectorModel - Interface in jsat
This interface is for binary classification and regression problems where the solution can be represented as a single weight vector.
SingularValueDecomposition - Class in jsat.linear
The Singular Value Decomposition (SVD) of a matrix Am,n = Um,n Σn,n VTn,n , where S is the diagonal matrix of the singular values sorted in descending order and are all non negative.
SingularValueDecomposition(Matrix) - Constructor for class jsat.linear.SingularValueDecomposition
Creates a new SVD of the matrix A such that A = U Σ VT.
SingularValueDecomposition(Matrix, int) - Constructor for class jsat.linear.SingularValueDecomposition
Creates a new SVD of the matrix A such that A = U Σ VT.
SingularValueDecomposition(Matrix, Matrix, double[]) - Constructor for class jsat.linear.SingularValueDecomposition
Sets the values for a SVD explicitly.
size() - Method in class jsat.classifiers.CategoricalResults
Returns the number of classes that are in the result.
size() - Method in class jsat.distributions.kernels.KernelPoints
Returns the number of KernelPoints stored in this set
size() - Method in class jsat.linear.vectorcollection.CoverTree
 
size() - Method in class jsat.linear.vectorcollection.EuclideanCollection
 
size() - Method in class jsat.linear.vectorcollection.KDTree
 
size() - Method in class jsat.linear.vectorcollection.lsh.RandomProjectionLSH
 
size() - Method in class jsat.linear.vectorcollection.RandomBallCover
 
size() - Method in class jsat.linear.vectorcollection.RandomBallCoverOneShot
 
size() - Method in class jsat.linear.vectorcollection.RTree
 
size() - Method in interface jsat.linear.vectorcollection.VectorCollection
Returns the number of vectors stored in the collection
size() - Method in class jsat.linear.vectorcollection.VPTree
 
size() - Method in class jsat.utils.DoubleList
 
size() - Method in class jsat.utils.FibHeap
 
size() - Method in class jsat.utils.IntDoubleMap
 
size() - Method in class jsat.utils.IntList
 
size() - Method in class jsat.utils.IntPriorityQueue
 
size() - Method in class jsat.utils.IntSet
 
size() - Method in class jsat.utils.IntSetFixedSize
 
size() - Method in class jsat.utils.IntSortedSet
 
size() - Method in class jsat.utils.LongDoubleMap
 
size() - Method in class jsat.utils.LongList
 
size() - Method in class jsat.utils.SimpleList
 
skewness() - Method in class jsat.distributions.Beta
 
skewness() - Method in class jsat.distributions.Cauchy
 
skewness() - Method in class jsat.distributions.ChiSquared
 
skewness() - Method in class jsat.distributions.ContinuousDistribution
 
skewness() - Method in class jsat.distributions.discrete.Binomial
 
skewness() - Method in class jsat.distributions.discrete.Poisson
 
skewness() - Method in class jsat.distributions.discrete.UniformDiscrete
 
skewness() - Method in class jsat.distributions.Distribution
Computes the skewness of the distribution.
skewness() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
skewness() - Method in class jsat.distributions.Exponential
 
skewness() - Method in class jsat.distributions.FisherSendor
 
skewness() - Method in class jsat.distributions.Gamma
 
skewness() - Method in class jsat.distributions.Kolmogorov
 
skewness() - Method in class jsat.distributions.Laplace
 
skewness() - Method in class jsat.distributions.Levy
 
skewness() - Method in class jsat.distributions.Logistic
 
skewness() - Method in class jsat.distributions.LogNormal
 
skewness() - Method in class jsat.distributions.LogUniform
 
skewness() - Method in class jsat.distributions.MaxwellBoltzmann
 
skewness() - Method in class jsat.distributions.Normal
 
skewness() - Method in class jsat.distributions.Pareto
 
skewness() - Method in class jsat.distributions.Rayleigh
 
skewness() - Method in class jsat.distributions.StudentT
 
skewness() - Method in class jsat.distributions.Uniform
 
skewness() - Method in class jsat.distributions.Weibull
 
skewness() - Method in class jsat.linear.DenseVector
 
skewness() - Method in class jsat.linear.ScaledVector
 
skewness() - Method in class jsat.linear.SparseVector
 
skewness() - Method in class jsat.linear.Vec
Computes the skewness of this vector, which is the 3rd moment.
skewness() - Method in class jsat.linear.VecPaired
 
SMIDAS - Class in jsat.classifiers.linear
Implements the iterative and single threaded stochastic solver for L1 regularized linear regression problems SMIDAS (Stochastic Mirror Descent Algorithm mAde Sparse).
SMIDAS(double) - Constructor for class jsat.classifiers.linear.SMIDAS
Creates a new SMIDAS learner
SMIDAS(double, int, double, StochasticSTLinearL1.Loss) - Constructor for class jsat.classifiers.linear.SMIDAS
Creates a new SMIDAS learner
SMIDAS(double, int, double, StochasticSTLinearL1.Loss, boolean) - Constructor for class jsat.classifiers.linear.SMIDAS
Creates a new SMIDAS learner
softmax(double[], boolean) - Static method in class jsat.math.MathTricks
Applies the softmax function to the given array of values, normalizing them so that each value is equal to

exp(xj) / Σ∀ i exp(xi)
softmax(Vec, boolean) - Static method in class jsat.math.MathTricks
Applies the softmax function to the given array of values, normalizing them so that each value is equal to

exp(xj) / Σ∀ i exp(xi)
Note: If the input is sparse, this will end up destroying sparsity
SoftmaxLayer - Class in jsat.classifiers.neuralnetwork.activations
This activation layer is meant to be used as the top-most layer for classification problems, and uses the softmax function (also known as cross entropy) to convert the inputs into probabilities.
SoftmaxLayer() - Constructor for class jsat.classifiers.neuralnetwork.activations.SoftmaxLayer
 
SoftmaxLoss - Class in jsat.lossfunctions
The Softmax loss function is a multi-class generalization of the Logistic loss.
SoftmaxLoss() - Constructor for class jsat.lossfunctions.SoftmaxLoss
 
softsignActiv - Static variable in class jsat.classifiers.neuralnetwork.BackPropagationNet
The softsign activation function.
SoftSignLayer - Class in jsat.classifiers.neuralnetwork.activations
This provides the Soft Sign activation function f(x) = x/(1+abs(x)), which is similar to the tanh activation and has a min/max of -1 and 1.
SoftSignLayer() - Constructor for class jsat.classifiers.neuralnetwork.activations.SoftSignLayer
 
solve(Vec) - Method in class jsat.linear.CholeskyDecomposition
Solves the linear system of equations A x = b
solve(Matrix) - Method in class jsat.linear.CholeskyDecomposition
Solves the linear system of equations A x = B
solve(Matrix, ExecutorService) - Method in class jsat.linear.CholeskyDecomposition
Solves the linear system of equations A x = B
solve(Vec) - Method in class jsat.linear.LUPDecomposition
 
solve(Matrix) - Method in class jsat.linear.LUPDecomposition
 
solve(Matrix, ExecutorService) - Method in class jsat.linear.LUPDecomposition
 
solve(Vec) - Method in class jsat.linear.QRDecomposition
 
solve(Matrix) - Method in class jsat.linear.QRDecomposition
 
solve(Matrix, ExecutorService) - Method in class jsat.linear.QRDecomposition
 
solve(Vec) - Method in class jsat.linear.SingularValueDecomposition
Solves the linear system of equations for A x = b by using the equation
x = A-1 b = V S-1 UT b
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error.
solve(Matrix) - Method in class jsat.linear.SingularValueDecomposition
Solves the linear system of equations for A x = B by using the equation
x = A-1 B = V S-1 UT B
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error.
solve(Matrix, ExecutorService) - Method in class jsat.linear.SingularValueDecomposition
Solves the linear system of equations for A x = B by using the equation
x = A-1 B = V S-1 UT B
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error.
solve(double, Matrix, Vec, Vec) - Static method in class jsat.linear.solvers.ConjugateGradient
Uses the Conjugate Gradient method to solve a linear system of equations involving a symmetric positive definite matrix.

A symmetric positive definite matrix is a matrix A such that:
AT = A xT * A * x > 0 for all x != 0

NOTE: No checks will be performed to confirm these properties of the given matrix.
solve(Matrix, Vec) - Static method in class jsat.linear.solvers.ConjugateGradient
 
solve(double, Matrix, Vec, Vec, Matrix) - Static method in class jsat.linear.solvers.ConjugateGradient
Uses the Conjugate Gradient method to solve a linear system of equations involving a symmetric positive definite matrix.

A symmetric positive definite matrix is a matrix A such that:
AT = A xT * A * x > 0 for all x != 0

NOTE: No checks will be performed to confirm these properties of the given matrix.
solveCGNR(double, Matrix, Vec, Vec) - Static method in class jsat.linear.solvers.ConjugateGradient
Uses the Conjugate Gradient method to compute the least squares solution to a system of linear equations.
Computes the least squares solution to A x = b.
solveCGNR(Matrix, Vec) - Static method in class jsat.linear.solvers.ConjugateGradient
 
SOM - Class in jsat.classifiers.neuralnetwork
An implementation of a Self Organizing Map, also called a Kohonen Map.
SOM(int, int) - Constructor for class jsat.classifiers.neuralnetwork.SOM
Creates a new SOM using the given parameters using the EuclideanDistance
SOM(DistanceMetric, int, int) - Constructor for class jsat.classifiers.neuralnetwork.SOM
Creates a new SOM using the given parameters
SOM(DistanceMetric, int, int, VectorCollectionFactory<VecPaired<Vec, Integer>>) - Constructor for class jsat.classifiers.neuralnetwork.SOM
Creates a new SOM using the given parameters
sort(double[]) - Method in class jsat.utils.IndexTable
Adjusts this index table to contain the sorted index order for the given array
sort(List<T>) - Method in class jsat.utils.IndexTable
Adjust this index table to contain the sorted index order for the given list
sort(List<T>, Comparator<T>) - Method in class jsat.utils.IndexTable
Sets up the index table based on the given list of the same size and comparator.
sort() - Method in class jsat.utils.IntList
Efficiently sorts this list of integers using Arrays.sort(int[]).
sort(double[], int, int) - Static method in class jsat.utils.QuickSort
Performs sorting based on the double values natural comparator.
sort(double[], int, int, Collection<List<?>>) - Static method in class jsat.utils.QuickSort
Performs sorting based on the double values natural comparator.
sort(float[], int, int, Collection<List<?>>) - Static method in class jsat.utils.QuickSort
Performs sorting based on the double values natural comparator.
sortByEigenValue(Comparator<Double>) - Method in class jsat.linear.EigenValueDecomposition
Sorts the eigen values and the corresponding eigenvector columns by the associated eigen value.
SortedArrayList<T extends Comparable<T>> - Class in jsat.utils
 
SortedArrayList(Collection<? extends T>) - Constructor for class jsat.utils.SortedArrayList
 
SortedArrayList(int) - Constructor for class jsat.utils.SortedArrayList
 
SortedArrayList() - Constructor for class jsat.utils.SortedArrayList
 
sortedCopy() - Method in class jsat.linear.DenseVector
 
sortedCopy() - Method in class jsat.linear.RandomVector
 
sortedCopy() - Method in class jsat.linear.ScaledVector
 
sortedCopy() - Method in class jsat.linear.SparseVector
 
sortedCopy() - Method in class jsat.linear.Vec
Returns a copy of this array with the values moved around so that they are in sorted order
sortedCopy() - Method in class jsat.linear.VecPaired
 
sortR(double[]) - Method in class jsat.utils.IndexTable
Adjusts this index table to contain the reverse sorted index order for the given array
sortR(List<T>) - Method in class jsat.utils.IndexTable
Adjusts this index table to contain the reverse sorted index order for the given list
SoSCentroidDistance - Class in jsat.clustering.evaluation.intra
Evaluates a cluster's validity by computing the sum of squared distances from each point to the mean of the cluster.
SoSCentroidDistance() - Constructor for class jsat.clustering.evaluation.intra.SoSCentroidDistance
Creates a new MeanCentroidDistance using the EuclideanDistance
SoSCentroidDistance(DistanceMetric) - Constructor for class jsat.clustering.evaluation.intra.SoSCentroidDistance
Creates a new MeanCentroidDistance.
SoSCentroidDistance(SoSCentroidDistance) - Constructor for class jsat.clustering.evaluation.intra.SoSCentroidDistance
Copy constructor
SPA - Class in jsat.classifiers.linear
Support class Passive Aggressive (SPA) is a multi class generalization of PassiveAggressive.
SPA() - Constructor for class jsat.classifiers.linear.SPA
Creates a new Passive Aggressive learner that does 10 epochs and uses PA2.
SPA(int, PassiveAggressive.Mode) - Constructor for class jsat.classifiers.linear.SPA
Creates a new Passive Aggressive learner
SparseMatrix - Class in jsat.linear
Creates a new Sparse Matrix where each row is backed by a sparse vector.
SparseMatrix(int, int, int) - Constructor for class jsat.linear.SparseMatrix
Creates a new sparse matrix
SparseMatrix(SparseVector[]) - Constructor for class jsat.linear.SparseMatrix
Creates a new Sparse Matrix backed by the given array of SpareVectors.
SparseMatrix(int, int) - Constructor for class jsat.linear.SparseMatrix
Creates a new sparse matrix
SparseMatrix(SparseMatrix) - Constructor for class jsat.linear.SparseMatrix
Copy constructor
SparseVector - Class in jsat.linear
Provides a vector implementation that is sparse.
SparseVector(int) - Constructor for class jsat.linear.SparseVector
Creates a new sparse vector of the given length that is all zero values.
SparseVector(List<Double>) - Constructor for class jsat.linear.SparseVector
Creates a new sparse vector of the same length as vals and sets each value to the values in the list.
SparseVector(int, int) - Constructor for class jsat.linear.SparseVector
Creates a new sparse vector of the specified length, and pre-allocates enough internal state to hold capacity non zero values.
SparseVector(int[], double[], int, int) - Constructor for class jsat.linear.SparseVector
Creates a new sparse vector backed by the given arrays.
SparseVector(Vec) - Constructor for class jsat.linear.SparseVector
Creates a new sparse vector by copying the values from another
sparsify() - Method in class jsat.classifiers.svm.SupportVectorLearner
Sparsifies the SVM by removing the vectors with α = 0 from the dataset.
SpecialMath - Class in jsat.math
This class provides static methods for computing accurate approximations to many special functions.
SpecialMath() - Constructor for class jsat.math.SpecialMath
 
splitList(List<T>, int) - Static method in class jsat.utils.ListUtils
This method takes a list and breaks it into count lists backed by the original list, with elements being equally spaced among the lists.
splitListIndex(List<Pair<Double, Integer>>) - Method in class jsat.linear.vectorcollection.VPTree
Determines which index to use as the splitting index for the VP radius
splitListIndex(List<Pair<Double, Integer>>) - Method in class jsat.linear.vectorcollection.VPTreeMV
 
sqrdFunc - Static variable in class jsat.math.MathTricks
Convenience object for taking the squared value of the first index
sqrtFunc - Static variable in class jsat.math.MathTricks
Convenience object for taking the square root of the first index
SquaredEuclideanDistance - Class in jsat.linear.distancemetrics
In many applications, the squared EuclideanDistance is used because it avoids an expensive Math.sqrt(double) operation.
SquaredEuclideanDistance() - Constructor for class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
SquaredLoss - Class in jsat.lossfunctions
The SquaredLoss loss function for regression L(x, y) = (x-y)2.
SquaredLoss() - Constructor for class jsat.lossfunctions.SquaredLoss
 
Stacking - Class in jsat.classifiers.boosting
This provides an implementation of the Stacking ensemble method.
Stacking(int, Classifier, List<Classifier>) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking classifier
Stacking(int, Classifier, Classifier...) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking classifier
Stacking(Classifier, List<Classifier>) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking classifier that uses 3 folds of cross validation
Stacking(Classifier, Classifier...) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking classifier that uses 3 folds of cross validation
Stacking(int, Regressor, List<Regressor>) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking regressor
Stacking(int, Regressor, Regressor...) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking regressor
Stacking(Regressor, List<Regressor>) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking regressor that uses 3 folds of cross validation
Stacking(Regressor, Regressor...) - Constructor for class jsat.classifiers.boosting.Stacking
Creates a new Stacking regressor that uses 3 folds of cross validation
Stacking(Stacking) - Constructor for class jsat.classifiers.boosting.Stacking
Copy constructor
standardDeviation() - Method in class jsat.distributions.Cauchy
The Cauchy distribution is unique in that it does not have a standard deviation value (undefined).
standardDeviation() - Method in class jsat.distributions.Distribution
Computes the standard deviation of the distribution.
standardDeviation() - Method in class jsat.distributions.Levy
 
standardDeviation() - Method in class jsat.distributions.Normal
 
standardDeviation() - Method in class jsat.linear.ConstantVector
 
standardDeviation() - Method in class jsat.linear.ScaledVector
 
standardDeviation() - Method in class jsat.linear.ShiftedVec
 
standardDeviation() - Method in class jsat.linear.Vec
Computes the standard deviation of the values in this vector
standardDeviation() - Method in class jsat.linear.VecPaired
 
StandardizeTransform - Class in jsat.datatransform
This transform performs standardization of the data, which makes each column have a mean of zero and a variance of one.
StandardizeTransform() - Constructor for class jsat.datatransform.StandardizeTransform
Creates a new object for Standardizing datasets
StandardizeTransform(DataSet) - Constructor for class jsat.datatransform.StandardizeTransform
Creates a new object for standaidizing datasets fit to the given dataset
StandardizeTransform(StandardizeTransform) - Constructor for class jsat.datatransform.StandardizeTransform
Copy constructor
StatisticTest - Interface in jsat.testing
 
StatisticTest.H1 - Enum in jsat.testing
 
stem(String) - Method in class jsat.text.stemming.LovinsStemmer
 
stem(String) - Method in class jsat.text.stemming.PaiceHuskStemmer
 
stem(String) - Method in class jsat.text.stemming.PorterStemmer
 
stem(String) - Method in class jsat.text.stemming.Stemmer
Reduce the given input to its stem word
stem(String) - Method in class jsat.text.stemming.VoidStemmer
 
Stemmer - Class in jsat.text.stemming
Stemmers are algorithms that attempt reduce strings to their common stem or root word.
Stemmer() - Constructor for class jsat.text.stemming.Stemmer
 
StemmingTokenizer - Class in jsat.text.tokenizer
 
StemmingTokenizer(Stemmer, Tokenizer) - Constructor for class jsat.text.tokenizer.StemmingTokenizer
 
STGD - Class in jsat.classifiers.linear
This provides an implementation of Sparse Truncated Gradient Descent for L1 regularized linear classification and regression on sparse data sets.
STGD(int, double, double, double) - Constructor for class jsat.classifiers.linear.STGD
Creates a new STGD learner
STGD(STGD) - Constructor for class jsat.classifiers.linear.STGD
Copy constructor
StochasticGradientBoosting - Class in jsat.regression
An implementation of Stochastic Gradient Boosting (SGB) for the Squared Error loss.
StochasticGradientBoosting(Regressor, Regressor, int, double, double) - Constructor for class jsat.regression.StochasticGradientBoosting
Creates a new initialized SGB learner.
StochasticGradientBoosting(Regressor, int, double, double) - Constructor for class jsat.regression.StochasticGradientBoosting
Creates a new SGB learner that is initialized using the weak learner.
StochasticGradientBoosting(Regressor, int, double) - Constructor for class jsat.regression.StochasticGradientBoosting
Creates a new SGB learner that is initialized using the weak learner.
StochasticGradientBoosting(Regressor, int) - Constructor for class jsat.regression.StochasticGradientBoosting
Creates a new SGB learner that is initialized using the weak learner.
StochasticMultinomialLogisticRegression - Class in jsat.classifiers.linear
This is a Stochastic implementation of Multinomial Logistic Regression.
StochasticMultinomialLogisticRegression(double, int, double, StochasticMultinomialLogisticRegression.Prior) - Constructor for class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Creates a new Stochastic Multinomial Logistic Regression object
StochasticMultinomialLogisticRegression(double, int) - Constructor for class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Creates a new Stochastic Multinomial Logistic Regression that uses a StochasticMultinomialLogisticRegression.Prior.GAUSSIAN prior with a regularization scale of 1e-6.
StochasticMultinomialLogisticRegression() - Constructor for class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Creates a new Stochastic Multinomial Logistic Regression that uses a StochasticMultinomialLogisticRegression.Prior.GAUSSIAN prior with a regularization scale of 1e-6.
StochasticMultinomialLogisticRegression(StochasticMultinomialLogisticRegression) - Constructor for class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
Copy constructor
StochasticMultinomialLogisticRegression.Prior - Enum in jsat.classifiers.linear
Represents a prior of the coefficients that can be applied to perform regularization.
StochasticRidgeRegression - Class in jsat.regression
A Stochastic implementation of Ridge Regression.
StochasticRidgeRegression(double, int, int, double) - Constructor for class jsat.regression.StochasticRidgeRegression
Creates a new stochastic Ridge Regression learner that does not use a decay rate
StochasticRidgeRegression(double, int, int, double, DecayRate) - Constructor for class jsat.regression.StochasticRidgeRegression
Creates a new stochastic Ridge Regression learner
StochasticSTLinearL1 - Class in jsat.classifiers.linear
This base class provides shared functionality and variables used by two different training algorithms for L1 regularized linear models.
StochasticSTLinearL1() - Constructor for class jsat.classifiers.linear.StochasticSTLinearL1
 
StochasticSTLinearL1.Loss - Enum in jsat.classifiers.linear
 
StopWordTokenizer - Class in jsat.text.tokenizer
This tokenizer wraps another such that any stop words that would have been returned by the base tokenizer are removed.
StopWordTokenizer(Tokenizer, Collection<String>) - Constructor for class jsat.text.tokenizer.StopWordTokenizer
Creates a new Stop Word tokenizer
StopWordTokenizer(Tokenizer, String...) - Constructor for class jsat.text.tokenizer.StopWordTokenizer
Creates a new Stop Word tokenizer
storageSpace - Variable in class jsat.text.HashedTextDataLoader
Temporary storage space to use for tokenization
storageSpace - Variable in class jsat.text.TextDataLoader
Temporary storage space to use for tokenization
storeMeans - Variable in class jsat.clustering.kmeans.KMeans
Indicates whether or not the means from the clustering should be saved
storeMedoids - Variable in class jsat.clustering.PAM
 
stratSet(int, Random) - Method in class jsat.classifiers.ClassificationDataSet
 
STRING_ENCODING_ASCII - Static variable in class jsat.io.JSATData
 
STRING_ENCODING_UTF_16 - Static variable in class jsat.io.JSATData
 
StringUtils - Class in jsat.utils
 
StringUtils() - Constructor for class jsat.utils.StringUtils
 
StudentT - Class in jsat.distributions
 
StudentT(double) - Constructor for class jsat.distributions.StudentT
 
StudentT(double, double, double) - Constructor for class jsat.distributions.StudentT
 
stump - Variable in class jsat.classifiers.trees.DecisionTree.Node
 
SubMatrix - Class in jsat.linear
This class allows for the selection of an area of a matrix to operate on independently.
SubMatrix(Matrix, int, int, int, int) - Constructor for class jsat.linear.SubMatrix
Creates a new matrix that is a sub view of the given base matrix.
submit(Callable<T>) - Method in class jsat.utils.FakeExecutor
 
submit(Runnable, T) - Method in class jsat.utils.FakeExecutor
 
submit(Runnable) - Method in class jsat.utils.FakeExecutor
 
subSet(Integer, Integer) - Method in class jsat.utils.IntSortedSet
 
subtract(Matrix) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A-B
subtract(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A-B
subtract(double) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A-c
subtract(double, ExecutorService) - Method in class jsat.linear.Matrix
Creates a new Matrix that stores the result of A-c
subtract(double) - Method in class jsat.linear.Vec
Returns a new vector that is the result of this - c
subtract(Vec) - Method in class jsat.linear.Vec
Returns a new vector that is the result of this - b
subtract(Vec) - Method in class jsat.linear.VecPaired
 
subtract(Complex) - Method in class jsat.math.Complex
Creates a new complex number containing the resulting subtracting another from this one
SubVector - Class in jsat.linear
SubVector takes an already existing vector and creates a new one that is a subset of and backed by the original one.
SubVector(int, int, Vec) - Constructor for class jsat.linear.SubVector
Creates a new sub vector of the input vector
sum() - Method in class jsat.linear.ConstantVector
 
sum() - Method in class jsat.linear.DenseVector
 
sum() - Method in class jsat.linear.ScaledVector
 
sum() - Method in class jsat.linear.SparseVector
 
sum() - Method in class jsat.linear.Vec
Computes the sum of the values in this vector
sum() - Method in class jsat.linear.VecPaired
 
summaryStats(Vec, Vec) - Static method in class jsat.math.DescriptiveStatistics
Computes several summary statistics from the two data sets.
SumOfSqrdPairwiseDistances - Class in jsat.clustering.evaluation.intra
Evaluates a cluster's validity by computing the normalized sum of pairwise distances for all points in the cluster.
SumOfSqrdPairwiseDistances() - Constructor for class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
Creates a new evaluator that uses the Euclidean distance
SumOfSqrdPairwiseDistances(DistanceMetric) - Constructor for class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
Creates a new cluster evaluator using the given distance metric
SumOfSqrdPairwiseDistances(SumOfSqrdPairwiseDistances) - Constructor for class jsat.clustering.evaluation.intra.SumOfSqrdPairwiseDistances
Copy constructor
supportsAcceleration() - Method in class jsat.distributions.kernels.BaseKernelTrick
 
supportsAcceleration() - Method in class jsat.distributions.kernels.BaseL2Kernel
 
supportsAcceleration() - Method in class jsat.distributions.kernels.DistanceMetricBasedKernel
 
supportsAcceleration() - Method in interface jsat.distributions.kernels.KernelTrick
Indicates if this kernel supports building an acceleration cache using the KernelTrick.getAccelerationCache(List) and associated cache accelerated methods.
supportsAcceleration() - Method in class jsat.distributions.kernels.NormalizedKernel
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.CosineDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.DistanceCounter
 
supportsAcceleration() - Method in interface jsat.linear.distancemetrics.DistanceMetric
Indicates if this distance metric supports building an acceleration cache using the DistanceMetric.getAccelerationCache(java.util.List) and associated distance methods.
supportsAcceleration() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.KernelDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.PearsonDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
supportsAcceleration() - Method in class jsat.linear.distancemetrics.WeightedEuclideanDistance
 
supportsClassificationTraining() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
supportsClassificationTraining() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
supportsClassificationTraining() - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Some metrics might be special purpose, and not trainable for all types of data sets or tasks.
supportsRegressionTraining() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
supportsRegressionTraining() - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
supportsRegressionTraining() - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Some metrics might be special purpose, and not trainable for all types of data sets tasks.
supportsWeightedData() - Method in class jsat.classifiers.bayesian.AODE
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.MultivariateNormals
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.NaiveBayes
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
 
supportsWeightedData() - Method in class jsat.classifiers.bayesian.ODE
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.AdaBoostM1
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.ArcX4
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.Bagging
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.EmphasisBoost
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.LogitBoost
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.SAMME
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.Stacking
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.UpdatableStacking
 
supportsWeightedData() - Method in class jsat.classifiers.boosting.Wagging
 
supportsWeightedData() - Method in class jsat.classifiers.calibration.IsotonicCalibration
 
supportsWeightedData() - Method in class jsat.classifiers.calibration.PlattCalibration
 
supportsWeightedData() - Method in interface jsat.classifiers.Classifier
Indicates whether the model knows how to train using weighted data points.
supportsWeightedData() - Method in class jsat.classifiers.knn.DANN
 
supportsWeightedData() - Method in class jsat.classifiers.knn.LWL
 
supportsWeightedData() - Method in class jsat.classifiers.knn.NearestNeighbour
 
supportsWeightedData() - Method in class jsat.classifiers.linear.ALMA2
 
supportsWeightedData() - Method in class jsat.classifiers.linear.AROW
 
supportsWeightedData() - Method in class jsat.classifiers.linear.BBR
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.BOGD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.DUOL
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.OSKL
 
supportsWeightedData() - Method in class jsat.classifiers.linear.kernelized.Projectron
 
supportsWeightedData() - Method in class jsat.classifiers.linear.LinearBatch
 
supportsWeightedData() - Method in class jsat.classifiers.linear.LinearL1SCD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.LinearSGD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.NewGLMNET
 
supportsWeightedData() - Method in class jsat.classifiers.linear.NHERD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.PassiveAggressive
 
supportsWeightedData() - Method in class jsat.classifiers.linear.ROMMA
 
supportsWeightedData() - Method in class jsat.classifiers.linear.SCD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.SCW
 
supportsWeightedData() - Method in class jsat.classifiers.linear.SMIDAS
 
supportsWeightedData() - Method in class jsat.classifiers.linear.SPA
 
supportsWeightedData() - Method in class jsat.classifiers.linear.STGD
 
supportsWeightedData() - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
supportsWeightedData() - Method in class jsat.classifiers.MajorityVote
 
supportsWeightedData() - Method in class jsat.classifiers.MultinomialLogisticRegression
 
supportsWeightedData() - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
supportsWeightedData() - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
supportsWeightedData() - Method in class jsat.classifiers.neuralnetwork.LVQ
 
supportsWeightedData() - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
supportsWeightedData() - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
supportsWeightedData() - Method in class jsat.classifiers.neuralnetwork.SOM
 
supportsWeightedData() - Method in class jsat.classifiers.OneVSAll
 
supportsWeightedData() - Method in class jsat.classifiers.OneVSOne
 
supportsWeightedData() - Method in class jsat.classifiers.PriorClassifier
 
supportsWeightedData() - Method in class jsat.classifiers.RegressorToClassifier
 
supportsWeightedData() - Method in class jsat.classifiers.Rocchio
 
supportsWeightedData() - Method in class jsat.classifiers.svm.DCD
 
supportsWeightedData() - Method in class jsat.classifiers.svm.DCDs
 
supportsWeightedData() - Method in class jsat.classifiers.svm.DCSVM
 
supportsWeightedData() - Method in class jsat.classifiers.svm.extended.CPM
 
supportsWeightedData() - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
supportsWeightedData() - Method in class jsat.classifiers.svm.LSSVM
 
supportsWeightedData() - Method in class jsat.classifiers.svm.Pegasos
 
supportsWeightedData() - Method in class jsat.classifiers.svm.PegasosK
 
supportsWeightedData() - Method in class jsat.classifiers.svm.PlattSMO
 
supportsWeightedData() - Method in class jsat.classifiers.svm.SBP
 
supportsWeightedData() - Method in class jsat.classifiers.svm.SVMnoBias
 
supportsWeightedData() - Method in class jsat.classifiers.trees.DecisionStump
 
supportsWeightedData() - Method in class jsat.classifiers.trees.DecisionTree
 
supportsWeightedData() - Method in class jsat.classifiers.trees.ERTrees
 
supportsWeightedData() - Method in class jsat.classifiers.trees.ExtraTree
 
supportsWeightedData() - Method in class jsat.classifiers.trees.ID3
 
supportsWeightedData() - Method in class jsat.classifiers.trees.RandomForest
 
supportsWeightedData() - Method in interface jsat.clustering.Clusterer
Indicates whether the model knows how to cluster using weighted data points.
supportsWeightedData() - Method in class jsat.clustering.ClustererBase
 
supportsWeightedData() - Method in class jsat.clustering.kmeans.KernelKMeans
 
supportsWeightedData() - Method in class jsat.clustering.kmeans.KMeans
 
supportsWeightedData() - Method in class jsat.datatransform.DataModelPipeline
 
supportsWeightedData() - Method in class jsat.parameters.ModelSearch
 
supportsWeightedData() - Method in class jsat.regression.AveragedRegressor
 
supportsWeightedData() - Method in class jsat.regression.KernelRidgeRegression
 
supportsWeightedData() - Method in class jsat.regression.KernelRLS
 
supportsWeightedData() - Method in class jsat.regression.LogisticRegression
 
supportsWeightedData() - Method in class jsat.regression.MultipleLinearRegression
 
supportsWeightedData() - Method in class jsat.regression.NadarayaWatson
 
supportsWeightedData() - Method in class jsat.regression.OrdinaryKriging
 
supportsWeightedData() - Method in class jsat.regression.RANSAC
 
supportsWeightedData() - Method in interface jsat.regression.Regressor
 
supportsWeightedData() - Method in class jsat.regression.RidgeRegression
 
supportsWeightedData() - Method in class jsat.regression.StochasticGradientBoosting
 
supportsWeightedData() - Method in class jsat.regression.StochasticRidgeRegression
 
SupportVectorLearner - Class in jsat.classifiers.svm
Base class for support vector style learners.
SupportVectorLearner() - Constructor for class jsat.classifiers.svm.SupportVectorLearner
This constructor is meant manly for Serialization to work.
SupportVectorLearner(KernelTrick, SupportVectorLearner.CacheMode) - Constructor for class jsat.classifiers.svm.SupportVectorLearner
Creates a new Support Vector Learner
SupportVectorLearner(SupportVectorLearner) - Constructor for class jsat.classifiers.svm.SupportVectorLearner
Copy constructor
SupportVectorLearner.CacheMode - Enum in jsat.classifiers.svm
Determines how the final kernel values are cached.
SVMnoBias - Class in jsat.classifiers.svm
This class implements a version of the Support Vector Machine without a bias term.
SVMnoBias(KernelTrick) - Constructor for class jsat.classifiers.svm.SVMnoBias
Creates a new SVM object that uses no cache mode.
SVMnoBias(SVMnoBias) - Constructor for class jsat.classifiers.svm.SVMnoBias
 
swap(int[], int, int) - Static method in class jsat.utils.ArrayUtils
Swaps two indices in the given array
swap(int, int) - Method in class jsat.utils.IndexTable
Swaps the given indices in the index table.
swap(List, int, int) - Static method in class jsat.utils.ListUtils
Swaps the values in the list at the given positions
swap(double[], int, int) - Static method in class jsat.utils.QuickSort
 
swap(float[], int, int) - Static method in class jsat.utils.QuickSort
 
swap(double[], int, int, Collection<List<?>>) - Static method in class jsat.utils.QuickSort
 
swap(float[], int, int, Collection<List<?>>) - Static method in class jsat.utils.QuickSort
 
swapC(double[], int, int) - Static method in class jsat.utils.QuickSort
Conditional swap, only swaps the values if array[i] > array[j]
swapCol(Matrix, int, int, int, int) - Static method in class jsat.linear.RowColumnOps
Swaps the columns j and k in the given matrix.
swapCol(Matrix, int, int) - Static method in class jsat.linear.RowColumnOps
Swaps the columns j and k in the given matrix.
swapRow(Matrix, int, int, int, int) - Static method in class jsat.linear.RowColumnOps
Swaps the rows j and k in the given matrix.
swapRow(Matrix, int, int) - Static method in class jsat.linear.RowColumnOps
Swaps the columns j and k in the given matrix.
swapRows(int, int) - Method in class jsat.linear.DenseMatrix
 
swapRows(int, int) - Method in class jsat.linear.GenericMatrix
 
swapRows(int, int) - Method in class jsat.linear.Matrix
Alters the current matrix by swapping the values stored in two different rows.
swapRows(int, int) - Method in class jsat.linear.SparseMatrix
 
SymmetricDirichlet - Class in jsat.distributions.multivariate
The Symmetric Dirichlet Distribution is a special case of the Dirichlet distribution, and occurs when all alphas have the same value.
SymmetricDirichlet(double, int) - Constructor for class jsat.distributions.multivariate.SymmetricDirichlet
Creates a new Symmetric Dirichlet distribution.
SystemInfo - Class in jsat.utils
This class provides Static system information that may be useful for algorithms that want to adjust their behavior based on the system's hardware information.
SystemInfo() - Constructor for class jsat.utils.SystemInfo
 

T

tailSet(Integer) - Method in class jsat.utils.IntSortedSet
 
takeStep(int, int) - Method in class jsat.classifiers.svm.PlattSMO
 
takeStepR(int, int) - Method in class jsat.classifiers.svm.PlattSMO
 
tanhActiv - Static variable in class jsat.classifiers.neuralnetwork.BackPropagationNet
The tanh activation function.
TanhInitializer - Class in jsat.classifiers.neuralnetwork.initializers
This initializer samples the weights from an adjusted uniform distribution in order to provided better behavior of neuron activation and gradients

See: Glorot, X., & Bengio, Y.
TanhInitializer() - Constructor for class jsat.classifiers.neuralnetwork.initializers.TanhInitializer
 
TanhLayer - Class in jsat.classifiers.neuralnetwork.activations
This layer provides the standard tanh activation f(x) = tanh(x)
TanhLayer() - Constructor for class jsat.classifiers.neuralnetwork.activations.TanhLayer
 
tau - Static variable in class jsat.text.GreekLetters
 
termDocumentFrequencys - Variable in class jsat.text.TextDataLoader
The map of integer counts of how many times each word token was seen.
testData(Vec) - Method in class jsat.testing.goodnessoffit.KSTest
Returns the p-value for the 2 sample KS Test against the given data set data.
testDist(ContinuousDistribution) - Method in class jsat.testing.goodnessoffit.KSTest
Returns the p-value for the KS Test against the given distribution cd.
testName() - Method in class jsat.testing.onesample.TTest
 
testName() - Method in class jsat.testing.onesample.ZTest
 
testName() - Method in interface jsat.testing.StatisticTest
 
TextDataLoader - Class in jsat.text
This class provides a framework for loading datasets made of Text documents as vectors.
TextDataLoader(Tokenizer, WordWeighting) - Constructor for class jsat.text.TextDataLoader
Creates a new loader for text datasets
TextVectorCreator - Interface in jsat.text
A Text Vector Creator is an object that can convert a text string into a Vec
TfIdf - Class in jsat.text.wordweighting
Applies Term Frequency Inverse Document Frequency (TF IDF) weighting to the word vectors.
TfIdf() - Constructor for class jsat.text.wordweighting.TfIdf
Creates a new TF-IDF document weighting scheme that uses LOG weighting for term frequency.
TfIdf(TfIdf.TermFrequencyWeight) - Constructor for class jsat.text.wordweighting.TfIdf
Creates a new TF-IDF document weighting scheme that uses the specified term frequency weighting
TfIdf.TermFrequencyWeight - Enum in jsat.text.wordweighting
 
theta - Static variable in class jsat.text.GreekLetters
 
time - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
time - Variable in class jsat.driftdetectors.BaseDriftDetector
Tracks the number of updates / trial scene.
tn - Variable in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
true negatives
toDenseVec(double...) - Static method in class jsat.linear.DenseVector
Returns a new dense vector backed by the given array.
tokenize(String) - Method in class jsat.text.tokenizer.NaiveTokenizer
 
tokenize(String, StringBuilder, List<String>) - Method in class jsat.text.tokenizer.NaiveTokenizer
 
tokenize(String) - Method in class jsat.text.tokenizer.NGramTokenizer
 
tokenize(String, StringBuilder, List<String>) - Method in class jsat.text.tokenizer.NGramTokenizer
 
tokenize(String) - Method in class jsat.text.tokenizer.StemmingTokenizer
 
tokenize(String, StringBuilder, List<String>) - Method in class jsat.text.tokenizer.StemmingTokenizer
 
tokenize(String) - Method in class jsat.text.tokenizer.StopWordTokenizer
 
tokenize(String, StringBuilder, List<String>) - Method in class jsat.text.tokenizer.StopWordTokenizer
 
tokenize(String) - Method in interface jsat.text.tokenizer.Tokenizer
Breaks the input string into a series of tokens that may be used as features for a classifier.
tokenize(String, StringBuilder, List<String>) - Method in interface jsat.text.tokenizer.Tokenizer
Breaks the input string into a series of tokens that may be used as features for a classifier.
tokenizer - Variable in class jsat.text.TextDataLoader
Tokenizer to apply to input strings
Tokenizer - Interface in jsat.text.tokenizer
Interface for taking the text of a document and breaking it up into features.
toParameterMap(List<Parameter>) - Static method in class jsat.parameters.Parameter
Creates a map of all possible parameter names to their corresponding object.
toString() - Method in class jsat.classifiers.CategoricalResults
 
toString() - Method in class jsat.classifiers.DataPoint
 
toString() - Method in class jsat.distributions.ContinuousDistribution
 
toString() - Method in class jsat.distributions.empirical.kernelfunc.BiweightKF
 
toString() - Method in class jsat.distributions.empirical.kernelfunc.EpanechnikovKF
 
toString() - Method in class jsat.distributions.empirical.kernelfunc.GaussKF
 
toString() - Method in interface jsat.distributions.empirical.kernelfunc.KernelFunction
Returns the name of this kernel function
toString() - Method in class jsat.distributions.empirical.kernelfunc.TriweightKF
 
toString() - Method in class jsat.distributions.empirical.kernelfunc.UniformKF
 
toString() - Method in interface jsat.distributions.kernels.KernelTrick
A descriptive name for the type of KernelFunction
toString() - Method in class jsat.distributions.kernels.LinearKernel
 
toString() - Method in class jsat.distributions.kernels.PolynomialKernel
 
toString() - Method in class jsat.distributions.kernels.RBFKernel
 
toString() - Method in class jsat.linear.distancemetrics.ChebyshevDistance
 
toString() - Method in class jsat.linear.distancemetrics.CosineDistance
 
toString() - Method in class jsat.linear.distancemetrics.CosineDistanceNormalized
 
toString() - Method in interface jsat.linear.distancemetrics.DistanceMetric
Returns a descriptive name of the Distance Metric in use
toString() - Method in class jsat.linear.distancemetrics.EuclideanDistance
 
toString() - Method in class jsat.linear.distancemetrics.KernelDistance
 
toString() - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
toString() - Method in class jsat.linear.distancemetrics.ManhattanDistance
 
toString() - Method in class jsat.linear.distancemetrics.MinkowskiDistance
 
toString() - Method in class jsat.linear.distancemetrics.SquaredEuclideanDistance
 
toString() - Method in class jsat.linear.Matrix
 
toString() - Method in class jsat.linear.SparseVector
 
toString() - Method in class jsat.linear.Vec
 
toString() - Method in class jsat.linear.VecPaired
 
toString() - Method in class jsat.math.Complex
 
toString() - Method in class jsat.math.decayrates.ExponetialDecay
 
toString() - Method in class jsat.math.decayrates.InverseDecay
 
toString() - Method in class jsat.math.decayrates.LinearDecay
 
toString() - Method in class jsat.math.decayrates.NoDecay
 
toString() - Method in class jsat.math.decayrates.PowerDecay
 
toString() - Method in class jsat.parameters.Parameter
 
toString() - Method in class jsat.utils.concurrent.AtomicDouble
 
toString() - Method in class jsat.utils.FibHeap.FibNode
 
toString() - Method in class jsat.utils.Pair
 
toString() - Method in class jsat.utils.PairedReturn
 
toString() - Method in class jsat.utils.Tuple3
 
TotalHistoryRegressionScore - Class in jsat.regression.evaluation
This abstract class provides the work for maintaining the history of predictions and their true values.
TotalHistoryRegressionScore() - Constructor for class jsat.regression.evaluation.TotalHistoryRegressionScore
 
TotalHistoryRegressionScore(TotalHistoryRegressionScore) - Constructor for class jsat.regression.evaluation.TotalHistoryRegressionScore
Copy constructor
tp - Variable in class jsat.classifiers.evaluation.SimpleBinaryClassMetric
true positives
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.Bagging
 
train(RegressionDataSet) - Method in class jsat.classifiers.boosting.Bagging
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.Stacking
 
train(RegressionDataSet) - Method in class jsat.classifiers.boosting.Stacking
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
train(RegressionDataSet) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.Wagging
 
train(RegressionDataSet) - Method in class jsat.classifiers.boosting.Wagging
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.knn.LWL
 
train(RegressionDataSet) - Method in class jsat.classifiers.knn.LWL
 
train(RegressionDataSet) - Method in class jsat.classifiers.knn.NearestNeighbour
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.knn.NearestNeighbour
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch
 
train(RegressionDataSet, Regressor) - Method in class jsat.classifiers.linear.LinearBatch
 
train(RegressionDataSet, Regressor, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.LinearBatch
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.LinearL1SCD
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.LinearL1SCD
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.LinearSGD
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.LinearSGD
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.PassiveAggressive
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.PassiveAggressive
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.SCD
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.SCD
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.SMIDAS
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.SMIDAS
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.linear.STGD
 
train(RegressionDataSet) - Method in class jsat.classifiers.linear.STGD
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
train(RegressionDataSet) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
train(RegressionDataSet) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.svm.DCD
 
train(RegressionDataSet) - Method in class jsat.classifiers.svm.DCD
 
train(RegressionDataSet, Regressor, ExecutorService) - Method in class jsat.classifiers.svm.DCDs
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.svm.DCDs
 
train(RegressionDataSet) - Method in class jsat.classifiers.svm.DCDs
 
train(RegressionDataSet, Regressor) - Method in class jsat.classifiers.svm.DCDs
 
train(RegressionDataSet, Regressor, ExecutorService) - Method in class jsat.classifiers.svm.LSSVM
 
train(RegressionDataSet, Regressor) - Method in class jsat.classifiers.svm.LSSVM
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.svm.LSSVM
 
train(RegressionDataSet) - Method in class jsat.classifiers.svm.LSSVM
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.svm.PlattSMO
 
train(RegressionDataSet, Regressor, ExecutorService) - Method in class jsat.classifiers.svm.PlattSMO
 
train(RegressionDataSet) - Method in class jsat.classifiers.svm.PlattSMO
 
train(RegressionDataSet, Regressor) - Method in class jsat.classifiers.svm.PlattSMO
 
train(RegressionDataSet) - Method in class jsat.classifiers.trees.DecisionStump
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.trees.DecisionStump
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.trees.DecisionTree
 
train(RegressionDataSet, Set<Integer>) - Method in class jsat.classifiers.trees.DecisionTree
 
train(RegressionDataSet, Set<Integer>, ExecutorService) - Method in class jsat.classifiers.trees.DecisionTree
 
train(RegressionDataSet) - Method in class jsat.classifiers.trees.DecisionTree
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.trees.ERTrees
 
train(RegressionDataSet) - Method in class jsat.classifiers.trees.ERTrees
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.trees.ExtraTree
 
train(RegressionDataSet) - Method in class jsat.classifiers.trees.ExtraTree
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.classifiers.trees.RandomForest
 
train(RegressionDataSet) - Method in class jsat.classifiers.trees.RandomForest
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.datatransform.DataModelPipeline
 
train(RegressionDataSet) - Method in class jsat.datatransform.DataModelPipeline
 
train(List<V>) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(List<V>, ExecutorService) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(DataSet) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(DataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(ClassificationDataSet) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(ClassificationDataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(RegressionDataSet) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.MahalanobisDistance
 
train(List<V>) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(List<V>, ExecutorService) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(DataSet) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(DataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(ClassificationDataSet) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(ClassificationDataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(RegressionDataSet) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.NormalizedEuclideanDistance
 
train(List<V>) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given data set
train(List<V>, ExecutorService) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given data set
train(DataSet) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given data set
train(DataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given data set
train(ClassificationDataSet) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given classification problem data set
train(ClassificationDataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given classification problem data set
train(RegressionDataSet) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given regression problem data set
train(RegressionDataSet, ExecutorService) - Method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Trains this metric on the given regression problem data set
train(RegressionDataSet, ExecutorService) - Method in class jsat.parameters.GridSearch
 
train(RegressionDataSet) - Method in class jsat.parameters.GridSearch
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.parameters.RandomSearch
 
train(RegressionDataSet) - Method in class jsat.parameters.RandomSearch
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.AveragedRegressor
 
train(RegressionDataSet) - Method in class jsat.regression.AveragedRegressor
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.BaseUpdateableRegressor
 
train(RegressionDataSet) - Method in class jsat.regression.BaseUpdateableRegressor
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.KernelRidgeRegression
 
train(RegressionDataSet) - Method in class jsat.regression.KernelRidgeRegression
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.KernelRLS
 
train(RegressionDataSet) - Method in class jsat.regression.KernelRLS
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.LogisticRegression
 
train(RegressionDataSet) - Method in class jsat.regression.LogisticRegression
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.MultipleLinearRegression
 
train(RegressionDataSet) - Method in class jsat.regression.MultipleLinearRegression
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.NadarayaWatson
 
train(RegressionDataSet) - Method in class jsat.regression.NadarayaWatson
 
train(RegressionDataSet, double) - Method in class jsat.regression.OrdinaryKriging.PowVariogram
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.OrdinaryKriging
 
train(RegressionDataSet) - Method in class jsat.regression.OrdinaryKriging
 
train(RegressionDataSet, double) - Method in interface jsat.regression.OrdinaryKriging.Variogram
Sets the values of the variogram
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.RANSAC
 
train(RegressionDataSet) - Method in class jsat.regression.RANSAC
 
train(RegressionDataSet, ExecutorService) - Method in interface jsat.regression.Regressor
 
train(RegressionDataSet) - Method in interface jsat.regression.Regressor
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.RidgeRegression
 
train(RegressionDataSet) - Method in class jsat.regression.RidgeRegression
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.StochasticGradientBoosting
 
train(RegressionDataSet) - Method in class jsat.regression.StochasticGradientBoosting
 
train(RegressionDataSet, ExecutorService) - Method in class jsat.regression.StochasticRidgeRegression
 
train(RegressionDataSet) - Method in class jsat.regression.StochasticRidgeRegression
 
train(RegressionDataSet, Regressor, ExecutorService) - Method in interface jsat.regression.WarmRegressor
Trains the regressor and constructs a model for regression using the given data set.
train(RegressionDataSet, Regressor) - Method in interface jsat.regression.WarmRegressor
Trains the regressor and constructs a model for regression using the given data set.
TrainableDistanceMetric - Class in jsat.linear.distancemetrics
Some Distance Metrics require information that can be learned from the data set.
TrainableDistanceMetric() - Constructor for class jsat.linear.distancemetrics.TrainableDistanceMetric
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.BaseUpdateableClassifier
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.BaseUpdateableClassifier
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.bayesian.AODE
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.BestClassDistribution
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
 
trainC(ClassificationDataSet, Set<Integer>) - Method in class jsat.classifiers.bayesian.ConditionalProbabilityTable
Creates a CPT using only a subset of the features specified by categoriesToUse.
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.graphicalmodel.DiscreteBayesNetwork
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.graphicalmodel.K2NetworkLearner
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.bayesian.NaiveBayes
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.bayesian.NaiveBayes
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.AdaBoostM1
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.AdaBoostM1
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.AdaBoostM1PL
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.AdaBoostM1PL
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.ArcX4
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.ArcX4
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.Bagging
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.Bagging
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.EmphasisBoost
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.EmphasisBoost
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.LogitBoost
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.LogitBoost
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.LogitBoostPL
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.ModestAdaBoost
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.SAMME
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.SAMME
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.Stacking
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.Stacking
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.boosting.Wagging
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.boosting.Wagging
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.calibration.BinaryCalibration
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.calibration.BinaryCalibration
 
trainC(ClassificationDataSet, ExecutorService) - Method in interface jsat.classifiers.Classifier
Trains the classifier and constructs a model for classification using the given data set.
trainC(ClassificationDataSet) - Method in interface jsat.classifiers.Classifier
Trains the classifier and constructs a model for classification using the given data set.
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.knn.DANN
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.knn.DANN
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.knn.LWL
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.knn.LWL
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.knn.NearestNeighbour
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.knn.NearestNeighbour
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.BBR
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.BBR
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.kernelized.CSKLRBatch
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
trainC(ClassificationDataSet, Classifier) - Method in class jsat.classifiers.linear.LinearBatch
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch
 
trainC(ClassificationDataSet, Classifier, ExecutorService) - Method in class jsat.classifiers.linear.LinearBatch
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.LinearBatch
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.LinearL1SCD
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.LinearL1SCD
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.LogisticRegressionDCD
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.NewGLMNET
 
trainC(ClassificationDataSet, Classifier, ExecutorService) - Method in class jsat.classifiers.linear.NewGLMNET
 
trainC(ClassificationDataSet, Classifier) - Method in class jsat.classifiers.linear.NewGLMNET
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.NewGLMNET
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.PassiveAggressive
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.PassiveAggressive
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.SCD
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.SCD
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.SMIDAS
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.SMIDAS
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.linear.StochasticMultinomialLogisticRegression
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.MajorityVote
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.MajorityVote
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.MultinomialLogisticRegression
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.MultinomialLogisticRegression
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.BackPropagationNet
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.DReDNetSimple
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.LVQ
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.LVQ
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.LVQLLC
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.LVQLLC
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.SOM
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.SOM
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.OneVSAll
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.OneVSAll
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.OneVSOne
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.OneVSOne
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.PriorClassifier
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.PriorClassifier
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.RegressorToClassifier
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.RegressorToClassifier
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.Rocchio
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.Rocchio
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.DCD
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.DCD
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.DCDs
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.DCDs
 
trainC(ClassificationDataSet, Classifier, ExecutorService) - Method in class jsat.classifiers.svm.DCDs
 
trainC(ClassificationDataSet, Classifier) - Method in class jsat.classifiers.svm.DCDs
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.DCSVM
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.DCSVM
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.extended.AMM
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.extended.AMM
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.extended.CPM
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.extended.CPM
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.LSSVM
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.LSSVM
 
trainC(ClassificationDataSet, Classifier, ExecutorService) - Method in class jsat.classifiers.svm.LSSVM
 
trainC(ClassificationDataSet, Classifier) - Method in class jsat.classifiers.svm.LSSVM
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.Pegasos
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.Pegasos
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.PegasosK
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.PegasosK
 
trainC(ClassificationDataSet, Classifier, ExecutorService) - Method in class jsat.classifiers.svm.PlattSMO
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.PlattSMO
 
trainC(ClassificationDataSet, Classifier) - Method in class jsat.classifiers.svm.PlattSMO
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.PlattSMO
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.SBP
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.SBP
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.svm.SVMnoBias
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.svm.SVMnoBias
 
trainC(ClassificationDataSet, double[]) - Method in class jsat.classifiers.svm.SVMnoBias
 
trainC(ClassificationDataSet, double[], ExecutorService) - Method in class jsat.classifiers.svm.SVMnoBias
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.trees.DecisionStump
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.trees.DecisionStump
 
trainC(List<DataPointPair<Integer>>, Set<Integer>) - Method in class jsat.classifiers.trees.DecisionStump
This is a helper function that does the work of training this stump.
trainC(List<DataPointPair<Integer>>, Set<Integer>, ExecutorService) - Method in class jsat.classifiers.trees.DecisionStump
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.trees.DecisionTree
 
trainC(ClassificationDataSet, Set<Integer>, ExecutorService) - Method in class jsat.classifiers.trees.DecisionTree
Performs exactly the same as DecisionTree.trainC(jsat.classifiers.ClassificationDataSet, java.util.concurrent.ExecutorService), but the user can specify a subset of the features to be considered.
trainC(ClassificationDataSet) - Method in class jsat.classifiers.trees.DecisionTree
 
trainC(ClassificationDataSet, Set<Integer>) - Method in class jsat.classifiers.trees.DecisionTree
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.trees.ERTrees
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.trees.ERTrees
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.trees.ExtraTree
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.trees.ExtraTree
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.trees.ID3
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.trees.ID3
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.classifiers.trees.RandomForest
 
trainC(ClassificationDataSet) - Method in class jsat.classifiers.trees.RandomForest
 
trainC(ClassificationDataSet, Classifier, ExecutorService) - Method in interface jsat.classifiers.WarmClassifier
Trains the classifier and constructs a model for classification using the given data set.
trainC(ClassificationDataSet, Classifier) - Method in interface jsat.classifiers.WarmClassifier
Trains the classifier and constructs a model for classification using the given data set.
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.datatransform.DataModelPipeline
 
trainC(ClassificationDataSet) - Method in class jsat.datatransform.DataModelPipeline
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.parameters.GridSearch
 
trainC(ClassificationDataSet) - Method in class jsat.parameters.GridSearch
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.parameters.RandomSearch
 
trainC(ClassificationDataSet) - Method in class jsat.parameters.RandomSearch
 
trainC(ClassificationDataSet, ExecutorService) - Method in class jsat.regression.LogisticRegression
 
trainC(ClassificationDataSet) - Method in class jsat.regression.LogisticRegression
 
trainCOnline(ClassificationDataSet) - Method in class jsat.classifiers.neuralnetwork.Perceptron
 
trainedClassifier - Variable in class jsat.parameters.ModelSearch
 
trainedRegressor - Variable in class jsat.parameters.ModelSearch
 
trainEpochs(ClassificationDataSet, UpdateableClassifier, int) - Static method in class jsat.classifiers.BaseUpdateableClassifier
Performs training on an updateable classifier by going over the whole data set in random order one observation at a time, multiple times.
trainEpochs(RegressionDataSet, UpdateableRegressor, int) - Static method in class jsat.regression.BaseUpdateableRegressor
Performs training on an updateable classifier by going over the whole data set in random order one observation at a time, multiple times.
trainFinalModel - Variable in class jsat.parameters.ModelSearch
If true, trains the final model on the parameters used
trainIfNeeded(DistanceMetric, DataSet) - Static method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Static helper method for training a distance metric only if it is needed.
trainIfNeeded(DistanceMetric, DataSet, ExecutorService) - Static method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Static helper method for training a distance metric only if it is needed.
trainIfNeeded(DistanceMetric, List<V>) - Static method in class jsat.linear.distancemetrics.TrainableDistanceMetric
Static helper method for training a distance metric only if it is needed.
trainIfNeeded(DistanceMetric, List<V>, ExecutorService) - Static method in class jsat.linear.distancemetrics.TrainableDistanceMetric
 
trainModelsInParallel - Variable in class jsat.parameters.ModelSearch
If true, parallelism will be obtained by training the models in parallel.
trainR(List<DataPointPair<Double>>, Set<Integer>) - Method in class jsat.classifiers.trees.DecisionStump
 
trainR(List<DataPointPair<Double>>, Set<Integer>, ExecutorService) - Method in class jsat.classifiers.trees.DecisionStump
 
transform(DataPoint) - Method in class jsat.classifiers.neuralnetwork.RBFNet
 
transform(DataPoint) - Method in class jsat.datatransform.AutoDeskewTransform
 
transform(DataPoint) - Method in interface jsat.datatransform.DataTransform
Returns a new data point that is a transformation of the original data point.
transform(DataPoint) - Method in class jsat.datatransform.DataTransformProcess
 
transform(DataPoint) - Method in class jsat.datatransform.DenseSparceTransform
 
transform(DataPoint) - Method in class jsat.datatransform.FastICA
 
transform(DataPoint) - Method in class jsat.datatransform.featureselection.BDS
 
transform(DataPoint) - Method in class jsat.datatransform.featureselection.LRS
 
transform(DataPoint) - Method in class jsat.datatransform.featureselection.SFS
 
transform(DataPoint) - Method in class jsat.datatransform.Imputer
 
transform(DataPoint) - Method in class jsat.datatransform.InsertMissingValuesTransform
 
transform(DataPoint) - Method in class jsat.datatransform.InverseOfTransform
 
transform(DataPoint) - Method in class jsat.datatransform.JLTransform
 
transform(DataPoint) - Method in class jsat.datatransform.kernel.KernelPCA
 
transform(DataPoint) - Method in class jsat.datatransform.kernel.Nystrom
 
transform(DataPoint) - Method in class jsat.datatransform.kernel.RFF_RBF
 
transform(DataPoint) - Method in class jsat.datatransform.LinearTransform
 
transform(DataPoint) - Method in class jsat.datatransform.NominalToNumeric
 
transform(DataPoint) - Method in class jsat.datatransform.NumericalToHistogram
 
transform(DataPoint) - Method in class jsat.datatransform.PCA
 
transform(DataPoint) - Method in class jsat.datatransform.PNormNormalization
 
transform(DataPoint) - Method in class jsat.datatransform.PolynomialTransform
 
transform(DataPoint) - Method in class jsat.datatransform.RemoveAttributeTransform
 
transform(DataPoint) - Method in class jsat.datatransform.StandardizeTransform
 
transform(DataPoint) - Method in class jsat.datatransform.UnitVarianceTransform
 
transform(DataSet<Type>) - Method in class jsat.datatransform.visualization.Isomap
 
transform(DataSet<Type>, ExecutorService) - Method in class jsat.datatransform.visualization.Isomap
 
transform(DataSet<Type>) - Method in class jsat.datatransform.visualization.LargeViz
 
transform(DataSet<Type>, ExecutorService) - Method in class jsat.datatransform.visualization.LargeViz
 
transform(DataSet<Type>) - Method in class jsat.datatransform.visualization.MDS
 
transform(DataSet<Type>, ExecutorService) - Method in class jsat.datatransform.visualization.MDS
 
transform(Matrix) - Method in class jsat.datatransform.visualization.MDS
 
transform(Matrix, ExecutorService) - Method in class jsat.datatransform.visualization.MDS
 
transform(DataSet<Type>) - Method in class jsat.datatransform.visualization.TSNE
 
transform(DataSet<Type>, ExecutorService) - Method in class jsat.datatransform.visualization.TSNE
 
transform(DataSet<Type>) - Method in interface jsat.datatransform.visualization.VisualizationTransform
Transforms the given data set, returning a dataset of the same type.
transform(DataSet<Type>, ExecutorService) - Method in interface jsat.datatransform.visualization.VisualizationTransform
Transforms the given data set, returning a dataset of the same type.
transform - Variable in class jsat.datatransform.WhitenedPCA
The final transformation matrix, that will create new points y = transform * x
transform(DataPoint) - Method in class jsat.datatransform.WhitenedPCA
 
transform(DataPoint) - Method in class jsat.datatransform.ZeroMeanTransform
 
transpose() - Method in class jsat.linear.DenseMatrix
 
transpose(Matrix) - Method in class jsat.linear.DenseMatrix
 
transpose(Matrix) - Method in class jsat.linear.GenericMatrix
 
transpose() - Method in class jsat.linear.Matrix
Returns a new matrix that is the transpose of this matrix.
transpose(Matrix) - Method in class jsat.linear.Matrix
Overwrites the values stored in matrix C to store the value of A'
transpose(Matrix) - Method in class jsat.linear.SparseMatrix
 
transposeMultiply(double, Vec, Vec) - Method in class jsat.linear.DenseMatrix
 
transposeMultiply(Matrix, Matrix) - Method in class jsat.linear.DenseMatrix
 
transposeMultiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.DenseMatrix
 
transposeMultiply(double, Vec, Vec) - Method in class jsat.linear.GenericMatrix
 
transposeMultiply(Matrix, Matrix) - Method in class jsat.linear.GenericMatrix
 
transposeMultiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.GenericMatrix
 
transposeMultiply(Matrix) - Method in class jsat.linear.Matrix
Creates a new matrix equal to A'*B, or the same result as
A.transpose().multiply(B)
transposeMultiply(Matrix, Matrix) - Method in class jsat.linear.Matrix
Alters the matrix C so that C = C + A'*B
transposeMultiply(Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Computes the result matrix of A'*B, or the same result as
A.transpose().multiply(B)
transposeMultiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.Matrix
Alters the matrix C so that C = C + A'*B
transposeMultiply(double, Vec, Vec) - Method in class jsat.linear.Matrix
Alters the vector x to be equal to x = x + A'*b*c
transposeMultiply(double, Vec) - Method in class jsat.linear.Matrix
Creates a new vector equal to x = A'*b*c
transposeMultiply(Matrix, Matrix) - Method in class jsat.linear.SparseMatrix
 
transposeMultiply(Matrix, Matrix, ExecutorService) - Method in class jsat.linear.SparseMatrix
 
transposeMultiply(double, Vec, Vec) - Method in class jsat.linear.SparseMatrix
 
TransposeView - Class in jsat.linear
This class provides a free view of the transpose of a matrix.
TransposeView(Matrix) - Constructor for class jsat.linear.TransposeView
 
Trapezoidal - Class in jsat.math.integration
 
Trapezoidal() - Constructor for class jsat.math.integration.Trapezoidal
 
trapz(Function, double, double, int) - Static method in class jsat.math.integration.Trapezoidal
 
TreeBarrier - Class in jsat.utils.concurrent
Tree Barrier is a barrier that requires only log(n) communication for barrier with n threads.
TreeBarrier(int) - Constructor for class jsat.utils.concurrent.TreeBarrier
Creates a new Tree Barrier for synchronization
TreeFeatureImportanceInference - Interface in jsat.classifiers.trees
This interface exists for implementing the importance of features from tree based models.
TreeLearner - Interface in jsat.classifiers.trees
This interface provides a contract that allows for the mutation and pruning of a tree using the TreeNodeVisitor and related classes.
TreeNodeVisitor - Class in jsat.classifiers.trees
Provides an abstracted mechanism for traversing and predicting from nodes in a tree meant for a supervised learning problem.
TreeNodeVisitor() - Constructor for class jsat.classifiers.trees.TreeNodeVisitor
 
TreePruner - Class in jsat.classifiers.trees
Provides post-pruning algorithms for any decision tree that can be altered using the TreeNodeVisitor.
TreePruner.PruningMethod - Enum in jsat.classifiers.trees
The method of pruning to use
TrigMath - Class in jsat.math
This class includes additional trig and hyperbolic trig that does not come with Java.Math by default.
TrigMath() - Constructor for class jsat.math.TrigMath
 
TriweightKF - Class in jsat.distributions.empirical.kernelfunc
 
TruncatedDistribution - Class in jsat.distributions
This distribution truncates a given continuous distribution only be valid for values in the range (min, max].
TruncatedDistribution(ContinuousDistribution, double, double) - Constructor for class jsat.distributions.TruncatedDistribution
 
truths - Variable in class jsat.regression.evaluation.TotalHistoryRegressionScore
List of the true target values
TSNE - Class in jsat.datatransform.visualization
t-distributed Stochastic Neighbor Embedding is an algorithm for creating low dimensional embeddings of datasets, for the purpose of visualization.
TSNE() - Constructor for class jsat.datatransform.visualization.TSNE
 
TTest - Class in jsat.testing.onesample
 
TTest(StatisticTest.H1, double, double, double, double) - Constructor for class jsat.testing.onesample.TTest
 
TTest(double, double, double, double) - Constructor for class jsat.testing.onesample.TTest
 
TTest(StatisticTest.H1, double, Vec) - Constructor for class jsat.testing.onesample.TTest
 
TTest() - Constructor for class jsat.testing.onesample.TTest
 
Tuple3<X,Y,Z> - Class in jsat.utils
 
Tuple3(X, Y, Z) - Constructor for class jsat.utils.Tuple3
 
Tuple3() - Constructor for class jsat.utils.Tuple3
 
twinPrimesP2 - Static variable in class jsat.utils.ClosedHashingUtil
This array lits twin primes that are just larger than a power of 2.
twoLoopHp(Vec, List<Double>, List<Vec>, List<Vec>, Vec, double[]) - Static method in class jsat.math.optimization.LBFGS
See Algorithm 7.4 (L-BFGS two-loop recursion).

U

UnhandledDriftException - Exception in jsat.driftdetectors
This exception is thrown when a drift detector receives new data even through the drift was not handled.
UnhandledDriftException() - Constructor for exception jsat.driftdetectors.UnhandledDriftException
 
UnhandledDriftException(String) - Constructor for exception jsat.driftdetectors.UnhandledDriftException
 
Uniform - Class in jsat.distributions
 
Uniform(double, double) - Constructor for class jsat.distributions.Uniform
 
UniformDiscrete - Class in jsat.distributions.discrete
The discrete uniform distribution.
UniformDiscrete() - Constructor for class jsat.distributions.discrete.UniformDiscrete
Creates a new Uniform distribution with a min of 0 and a max of 10
UniformDiscrete(int, int) - Constructor for class jsat.distributions.discrete.UniformDiscrete
Creates a new discrete uniform distribution
UniformKF - Class in jsat.distributions.empirical.kernelfunc
 
union(FibHeap<T>, FibHeap<T>) - Static method in class jsat.utils.FibHeap
 
union(UnionFind<X>) - Method in class jsat.utils.UnionFind
 
UnionFind<X> - Class in jsat.utils
 
UnionFind() - Constructor for class jsat.utils.UnionFind
 
UnionFind(X) - Constructor for class jsat.utils.UnionFind
 
UnitVarianceTransform - Class in jsat.datatransform
Creates a transform to alter data points so that each attribute has a standard deviation of 1, which means a variance of 1.
UnitVarianceTransform() - Constructor for class jsat.datatransform.UnitVarianceTransform
Creates a new object for transforming datasets
UnitVarianceTransform(DataSet) - Constructor for class jsat.datatransform.UnitVarianceTransform
Creates a new object for making datasets unit variance fit to the given dataset
unmodifiableView(double[], int) - Static method in class jsat.utils.DoubleList
Creates an returns an unmodifiable view of the given double array that requires only a small object allocation.
unmodifiableView(int[], int) - Static method in class jsat.utils.IntList
Creates and returns an unmodifiable view of the given int array that requires only a small object allocation.
UntrainedModelException - Exception in jsat.exceptions
This exception is thrown when someone attempts to use a model that has not been trained or constructed.
UntrainedModelException(String, Throwable) - Constructor for exception jsat.exceptions.UntrainedModelException
 
UntrainedModelException(Throwable) - Constructor for exception jsat.exceptions.UntrainedModelException
 
UntrainedModelException(String) - Constructor for exception jsat.exceptions.UntrainedModelException
 
UntrainedModelException() - Constructor for exception jsat.exceptions.UntrainedModelException
 
UpdatableClusterDissimilarity - Interface in jsat.clustering.dissimilarity
This interface extends the contract of a ClusterDissimilarity for more efficient computation.
UpdatableStacking - Class in jsat.classifiers.boosting
This provides an implementation of the Stacking ensemble method meant for Updatable models.
UpdatableStacking(UpdateableClassifier, List<UpdateableClassifier>) - Constructor for class jsat.classifiers.boosting.UpdatableStacking
Creates a new Stacking classifier
UpdatableStacking(UpdateableClassifier, UpdateableClassifier...) - Constructor for class jsat.classifiers.boosting.UpdatableStacking
Creates a new Stacking classifier.
UpdatableStacking(UpdateableRegressor, List<UpdateableRegressor>) - Constructor for class jsat.classifiers.boosting.UpdatableStacking
Creates a new Stacking regressor
UpdatableStacking(UpdateableRegressor, UpdateableRegressor...) - Constructor for class jsat.classifiers.boosting.UpdatableStacking
Creates a new Stacking regressor.
UpdatableStacking(UpdatableStacking) - Constructor for class jsat.classifiers.boosting.UpdatableStacking
Copy constructor
update(DataPoint, int) - Method in class jsat.classifiers.bayesian.AODE
 
update(DataPoint, int) - Method in class jsat.classifiers.bayesian.MultinomialNaiveBayes
 
update(DataPoint, int) - Method in class jsat.classifiers.bayesian.NaiveBayesUpdateable
 
update(DataPoint, int) - Method in class jsat.classifiers.bayesian.ODE
 
update(DataPoint, int) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
update(DataPoint, double) - Method in class jsat.classifiers.boosting.UpdatableStacking
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.ALMA2
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.AROW
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.ALMA2K
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.BOGD
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.CSKLR
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.DUOL
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.Forgetron
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
update(DataPoint, double) - Method in class jsat.classifiers.linear.kernelized.KernelSGD
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.OSKL
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.kernelized.Projectron
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.LinearSGD
 
update(DataPoint, double) - Method in class jsat.classifiers.linear.LinearSGD
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.NHERD
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.PassiveAggressive
 
update(DataPoint, double) - Method in class jsat.classifiers.linear.PassiveAggressive
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.ROMMA
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.SCW
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.SPA
 
update(DataPoint, int) - Method in class jsat.classifiers.linear.STGD
 
update(DataPoint, double) - Method in class jsat.classifiers.linear.STGD
 
update(DataPoint, int) - Method in class jsat.classifiers.svm.extended.OnlineAMM
 
update(DataPoint, int, int) - Method in class jsat.classifiers.svm.extended.OnlineAMM
Performs the work for an update.
update(DataPoint, int) - Method in interface jsat.classifiers.UpdateableClassifier
Updates the classifier by giving it a new data point to learn from.
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.AdaDelta
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.AdaDelta
 
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.AdaGrad
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.AdaGrad
 
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.Adam
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.Adam
 
update(Vec, Vec, double) - Method in interface jsat.math.optimization.stochastic.GradientUpdater
Updates the weight vector x such that x = x-ηf(grad), where f(grad) is some function on the gradient that effectively returns a new vector.
update(Vec, Vec, double, double, double) - Method in interface jsat.math.optimization.stochastic.GradientUpdater
Updates the weight vector x such that x = x-ηf(grad), where f(grad) is some function on the gradient that effectively returns a new vector.
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.NAdaGrad
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.NAdaGrad
 
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.RMSProp
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.RMSProp
 
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.Rprop
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.Rprop
 
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.SGDMomentum
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.SGDMomentum
 
update(Vec, Vec, double) - Method in class jsat.math.optimization.stochastic.SimpleSGD
 
update(Vec, Vec, double, double, double) - Method in class jsat.math.optimization.stochastic.SimpleSGD
 
update(DataPoint, double) - Method in class jsat.regression.KernelRLS
 
update(DataPoint, double) - Method in interface jsat.regression.UpdateableRegressor
Updates the classifier by giving it a new data point to learn from.
update(List<Vec>) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Performs an update of the LDA topic distributions based on the given mini-batch of documents.
update(List<Vec>, ExecutorService) - Method in class jsat.text.topicmodel.OnlineLDAsvi
Performs an update of the LDA topic distribution based on the given mini-batch of documents.
UpdateableClassifier - Interface in jsat.classifiers
UpdateableClassifier is an interface for one type of Online learner.
UpdateableRegressor - Interface in jsat.regression
UpdateableRegressor is an interface for one type of Online learner.
updateMeansFromChange(int, int[]) - Method in class jsat.clustering.kmeans.KernelKMeans
Updates the means based off the change of a specific data point
updateMeansFromChange(int, int[], double[], double[]) - Method in class jsat.clustering.kmeans.KernelKMeans
Accumulates the updates to the means and ownership into the provided arrays.
updateMiniBatch(List<Vec>, List<Vec>) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Performs a mini-batch update of the network using the given input and output pairs
updateMiniBatch(List<Vec>, List<Vec>, ExecutorService) - Method in class jsat.classifiers.neuralnetwork.SGDNetworkTrainer
Performs a mini-batch update of the network using the given input and output pairs
updateNormConsts() - Method in class jsat.clustering.kmeans.KernelKMeans
Updates the normalizing constants for each mean.
updateRow(int, double, Vec) - Method in class jsat.linear.Matrix
Alters row i of this matrix, such that A[i,:] = A[i,:] + c*b
updateRow(int, double, Vec) - Method in class jsat.linear.MatrixOfVecs
 
updatesGrad() - Method in class jsat.math.optimization.BacktrackingArmijoLineSearch
 
updatesGrad() - Method in interface jsat.math.optimization.LineSearch
When performing the linear search step some line searches may or may not use the gradient information.
updatesGrad() - Method in class jsat.math.optimization.WolfeNWLineSearch
 
upsilon - Static variable in class jsat.text.GreekLetters
 
USE_PRIORS - Static variable in class jsat.classifiers.bayesian.BestClassDistribution
The default value for whether or not to use the prior probability of a class when making classification decisions is true.
used - Variable in class jsat.linear.SparseVector
number of indices used in this vector
usingDPPList(List<DataPointPair<Double>>) - Static method in class jsat.regression.RegressionDataSet
Creates a new data set that uses the given list as its backing list.

V

val(double) - Method in class jsat.regression.OrdinaryKriging.PowVariogram
 
val(double) - Method in interface jsat.regression.OrdinaryKriging.Variogram
Returns the output of the variogram for the given input
validAlternate() - Method in class jsat.testing.onesample.TTest
 
validAlternate() - Method in class jsat.testing.onesample.ZTest
 
validAlternate() - Method in interface jsat.testing.StatisticTest
 
valueOf(String) - Static method in enum jsat.classifiers.bayesian.NaiveBayes.NumericalHandeling
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.calibration.BinaryCalibration.CalibrationMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.BBR.Prior
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.kernelized.CSKLR.UpdateMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.NHERD.CovMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.PassiveAggressive.Mode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.SCW.Mode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.StochasticMultinomialLogisticRegression.Prior
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.neuralnetwork.BackPropagationNet.WeightInitialization
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.neuralnetwork.LVQ.LVQVersion
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.neuralnetwork.RBFNet.Phase1Learner
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.neuralnetwork.RBFNet.Phase2Learner
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.svm.SupportVectorLearner.CacheMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.trees.ImpurityScore.ImpurityMeasure
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.classifiers.trees.TreePruner.PruningMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.clustering.OPTICS.ExtractionMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.clustering.SeedSelectionMethods.SeedSelection
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.datatransform.FastICA.DefaultNegEntropyFunc
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.datatransform.featureselection.MutualInfoFS.NumericalHandeling
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.datatransform.Imputer.NumericImputionMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.datatransform.JLTransform.TransformMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.datatransform.kernel.Nystrom.SamplingMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.distributions.kernels.KernelPoint.BudgetStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.io.JSATData.DatasetTypeMarker
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.io.JSATData.FloatStorageMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.linear.vectorcollection.KDTree.PivotSelection
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.linear.vectorcollection.VPTree.VPSelection
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.math.optimization.WolfeNWLineSearch.AlphaInit
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.regression.RidgeRegression.SolverMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.testing.StatisticTest.H1
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.text.wordweighting.TfIdf.TermFrequencyWeight
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum jsat.utils.IntPriorityQueue.Mode
Returns the enum constant of this type with the specified name.
values() - Static method in enum jsat.classifiers.bayesian.NaiveBayes.NumericalHandeling
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.calibration.BinaryCalibration.CalibrationMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.BBR.Prior
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.kernelized.CSKLR.UpdateMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.NHERD.CovMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.PassiveAggressive.Mode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.SCW.Mode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.StochasticMultinomialLogisticRegression.Prior
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.linear.StochasticSTLinearL1.Loss
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.neuralnetwork.BackPropagationNet.WeightInitialization
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.neuralnetwork.LVQ.LVQVersion
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.neuralnetwork.RBFNet.Phase1Learner
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.neuralnetwork.RBFNet.Phase2Learner
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.svm.SupportVectorLearner.CacheMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.trees.ImpurityScore.ImpurityMeasure
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.classifiers.trees.TreePruner.PruningMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.clustering.OPTICS.ExtractionMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.clustering.SeedSelectionMethods.SeedSelection
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.datatransform.FastICA.DefaultNegEntropyFunc
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.datatransform.featureselection.MutualInfoFS.NumericalHandeling
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.datatransform.Imputer.NumericImputionMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.datatransform.JLTransform.TransformMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.datatransform.kernel.Nystrom.SamplingMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.distributions.kernels.KernelPoint.BudgetStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.io.JSATData.DatasetTypeMarker
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.io.JSATData.FloatStorageMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values - Variable in class jsat.linear.SparseVector
The Corresponding values for each index
values() - Static method in enum jsat.linear.vectorcollection.KDTree.PivotSelection
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.linear.vectorcollection.VPTree.VPSelection
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.math.optimization.WolfeNWLineSearch.AlphaInit
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.regression.RidgeRegression.SolverMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.testing.StatisticTest.H1
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.text.wordweighting.TfIdf.TermFrequencyWeight
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum jsat.utils.IntPriorityQueue.Mode
Returns an array containing the constants of this enum type, in the order they are declared.
variance() - Method in class jsat.distributions.Beta
 
variance() - Method in class jsat.distributions.Cauchy
The Cauchy distribution is unique in that it does not have a variance value (undefined).
variance() - Method in class jsat.distributions.ChiSquared
 
variance() - Method in class jsat.distributions.ContinuousDistribution
 
variance() - Method in class jsat.distributions.discrete.Binomial
 
variance() - Method in class jsat.distributions.discrete.Poisson
 
variance() - Method in class jsat.distributions.discrete.UniformDiscrete
 
variance() - Method in class jsat.distributions.Distribution
Computes the variance of the distribution.
variance() - Method in class jsat.distributions.empirical.KernelDensityEstimator
 
variance() - Method in class jsat.distributions.Exponential
 
variance() - Method in class jsat.distributions.FisherSendor
 
variance() - Method in class jsat.distributions.Gamma
 
variance() - Method in class jsat.distributions.Kolmogorov
 
variance() - Method in class jsat.distributions.Laplace
 
variance() - Method in class jsat.distributions.Levy
 
variance() - Method in class jsat.distributions.Logistic
 
variance() - Method in class jsat.distributions.LogNormal
 
variance() - Method in class jsat.distributions.LogUniform
 
variance() - Method in class jsat.distributions.MaxwellBoltzmann
 
variance() - Method in class jsat.distributions.Normal
 
variance() - Method in class jsat.distributions.Pareto
 
variance() - Method in class jsat.distributions.Rayleigh
 
variance() - Method in class jsat.distributions.StudentT
 
variance() - Method in class jsat.distributions.Uniform
 
variance() - Method in class jsat.distributions.Weibull
 
variance() - Method in class jsat.linear.ConstantVector
 
variance() - Method in class jsat.linear.DenseVector
 
variance() - Method in class jsat.linear.ShiftedVec
 
variance() - Method in class jsat.linear.SparseVector
 
variance() - Method in class jsat.linear.Vec
Computes the variance of the values in this vector, which is Vec.standardDeviation()2
variance() - Method in class jsat.linear.VecPaired
 
vc - Variable in class jsat.classifiers.neuralnetwork.LVQ
Contains the Learning vectors paired with their index in the weights array
Vec - Class in jsat.linear
Vec is a object representing the math concept of a vector.
Vec() - Constructor for class jsat.linear.Vec
 
VecOps - Class in jsat.linear
This class provides efficient implementations of use full vector operations and updates.
VecOps() - Constructor for class jsat.linear.VecOps
 
VecPaired<V extends Vec,P> - Class in jsat.linear
This data structure allows to wrap a Vector so that it is associated with some object time.
VecPaired(V, P) - Constructor for class jsat.linear.VecPaired
 
VecPairedComparable<V extends Vec,P extends Comparable<P>> - Class in jsat.linear
Utility class for using VecPaired when the paired value is comparable , and the vectors need to be sorted based on their paired value.
VecPairedComparable(V, P) - Constructor for class jsat.linear.VecPairedComparable
 
vecPairedComparator() - Static method in class jsat.linear.VecPaired
 
vecs - Variable in class jsat.classifiers.svm.SupportVectorLearner
The array of vectors.
vecs - Variable in class jsat.distributions.kernels.KernelPoint
 
vecswap(double[], int, int, int) - Static method in class jsat.utils.QuickSort
 
vecswap(float[], int, int, int) - Static method in class jsat.utils.QuickSort
 
VectorArray<V extends Vec> - Class in jsat.linear.vectorcollection
This is the naive implementation of a Vector collection.
VectorArray(DistanceMetric, int) - Constructor for class jsat.linear.vectorcollection.VectorArray
 
VectorArray(DistanceMetric, Collection<? extends V>) - Constructor for class jsat.linear.vectorcollection.VectorArray
 
VectorArray(DistanceMetric) - Constructor for class jsat.linear.vectorcollection.VectorArray
 
VectorArray.VectorArrayFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
VectorArrayFactory() - Constructor for class jsat.linear.vectorcollection.VectorArray.VectorArrayFactory
 
VectorCollection<V extends Vec> - Interface in jsat.linear.vectorcollection
A Vector Collection is a collection of vectors that is meant to be used to obtain a subset of the collection via a query vector.
VectorCollectionFactory<V extends Vec> - Interface in jsat.linear.vectorcollection
A factory interface for the creation of VectorCollection objects.
VectorCollectionUtils - Class in jsat.linear.vectorcollection
A collection of common utility methods to perform on a VectorCollection
VectorCollectionUtils() - Constructor for class jsat.linear.vectorcollection.VectorCollectionUtils
 
vectors - Variable in class jsat.text.HashedTextDataLoader
List of original vectors
vectors - Variable in class jsat.text.TextDataLoader
List of original vectors
VecWithNorm - Class in jsat.linear
A wrapper for a vector that allows for transparent tracking of the 2-norm of the base vector.
VecWithNorm(Vec, double) - Constructor for class jsat.linear.VecWithNorm
Creates a wrapper around the base vector that will update the norm of the vector
VecWithNorm(Vec) - Constructor for class jsat.linear.VecWithNorm
Creates a wrapper around the base vector that will update the norm of the vector
view(double[], int) - Static method in class jsat.utils.DoubleList
Creates and returns a view of the given double array that requires only a small object allocation.
view(int[], int) - Static method in class jsat.utils.IntList
Creates and returns a view of the given int array that requires only a small object allocation.
view(long[], int) - Static method in class jsat.utils.LongList
Creates and returns a view of the given long array that requires only a small object allocation.
VisualizationTransform - Interface in jsat.datatransform.visualization
Visualization Transform is similar to the DataTransform interface, except it can not necessarily be applied to new datapoints.
VoidStemmer - Class in jsat.text.stemming
The most naive of stemming possible, this class simply returns whatever string is given to it.
VoidStemmer() - Constructor for class jsat.text.stemming.VoidStemmer
 
voters - Variable in class jsat.regression.AveragedRegressor
The array of voting regressors
VPTree<V extends Vec> - Class in jsat.linear.vectorcollection
Provides an implementation of Vantage Point Trees, as described in "Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces" by Peter N.
VPTree(List<V>, DistanceMetric, VPTree.VPSelection, Random, int, int, ExecutorService) - Constructor for class jsat.linear.vectorcollection.VPTree
 
VPTree(List<V>, DistanceMetric, VPTree.VPSelection, Random, int, int) - Constructor for class jsat.linear.vectorcollection.VPTree
 
VPTree(List<V>, DistanceMetric, VPTree.VPSelection) - Constructor for class jsat.linear.vectorcollection.VPTree
 
VPTree(List<V>, DistanceMetric, ExecutorService) - Constructor for class jsat.linear.vectorcollection.VPTree
 
VPTree(List<V>, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.VPTree
 
VPTree(DistanceMetric) - Constructor for class jsat.linear.vectorcollection.VPTree
 
VPTree(VPTree<V>) - Constructor for class jsat.linear.vectorcollection.VPTree
Copy constructor
VPTree() - Constructor for class jsat.linear.vectorcollection.VPTree
no-arg constructor for serialization
VPTree.VPSelection - Enum in jsat.linear.vectorcollection
 
VPTree.VPTreeFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
VPTreeFactory(VPTree.VPSelection) - Constructor for class jsat.linear.vectorcollection.VPTree.VPTreeFactory
 
VPTreeFactory() - Constructor for class jsat.linear.vectorcollection.VPTree.VPTreeFactory
 
VPTreeMV<V extends Vec> - Class in jsat.linear.vectorcollection
The VPTreeMV is an extension of the VPTree, the MV meaning "of Minimum Variance".
VPTreeMV(List<V>, DistanceMetric, VPTree.VPSelection, Random, int, int, ExecutorService) - Constructor for class jsat.linear.vectorcollection.VPTreeMV
 
VPTreeMV(List<V>, DistanceMetric, VPTree.VPSelection, Random, int, int) - Constructor for class jsat.linear.vectorcollection.VPTreeMV
 
VPTreeMV(List<V>, DistanceMetric, VPTree.VPSelection) - Constructor for class jsat.linear.vectorcollection.VPTreeMV
 
VPTreeMV(List<V>, DistanceMetric) - Constructor for class jsat.linear.vectorcollection.VPTreeMV
 
VPTreeMV(List<V>, DistanceMetric, ExecutorService) - Constructor for class jsat.linear.vectorcollection.VPTreeMV
 
VPTreeMV(DistanceMetric) - Constructor for class jsat.linear.vectorcollection.VPTreeMV
 
VPTreeMV.VPTreeMVFactory<V extends Vec> - Class in jsat.linear.vectorcollection
 
VPTreeMVFactory(VPTree.VPSelection) - Constructor for class jsat.linear.vectorcollection.VPTreeMV.VPTreeMVFactory
 
VPTreeMVFactory() - Constructor for class jsat.linear.vectorcollection.VPTreeMV.VPTreeMVFactory
 

W

w - Variable in class jsat.classifiers.linear.StochasticSTLinearL1
The final weight vector
W - Variable in class jsat.clustering.kmeans.KernelKMeans
The weight of each data point
Wagging - Class in jsat.classifiers.boosting
Wagging is a meta-classifier that is related to Bagging.
Wagging(ContinuousDistribution, Classifier, int) - Constructor for class jsat.classifiers.boosting.Wagging
Creates a new Wagging classifier
Wagging(ContinuousDistribution, Regressor, int) - Constructor for class jsat.classifiers.boosting.Wagging
Creates a new Wagging regressor
Wagging(Wagging) - Constructor for class jsat.classifiers.boosting.Wagging
Copy constructor
WaggingNormal - Class in jsat.classifiers.boosting
Wagging using the Normal distribution.
WaggingNormal(Classifier, int) - Constructor for class jsat.classifiers.boosting.WaggingNormal
Creates a new Wagging classifier
WaggingNormal(Regressor, int) - Constructor for class jsat.classifiers.boosting.WaggingNormal
Creates a new Wagging regressor
WaggingNormal(Wagging) - Constructor for class jsat.classifiers.boosting.WaggingNormal
Copy constructor
WardsDissimilarity - Class in jsat.clustering.dissimilarity
An implementation of Ward's method for hierarchical clustering.
WardsDissimilarity() - Constructor for class jsat.clustering.dissimilarity.WardsDissimilarity
 
WarmClassifier - Interface in jsat.classifiers
This interface is meant for models that support efficient warm starting from the solution of a previous model.
warmFromSameDataOnly() - Method in class jsat.classifiers.linear.LinearBatch
 
warmFromSameDataOnly() - Method in class jsat.classifiers.linear.NewGLMNET
 
warmFromSameDataOnly() - Method in class jsat.classifiers.svm.DCDs
 
warmFromSameDataOnly() - Method in class jsat.classifiers.svm.LSSVM
 
warmFromSameDataOnly() - Method in class jsat.classifiers.svm.PlattSMO
 
warmFromSameDataOnly() - Method in interface jsat.classifiers.WarmClassifier
Some models can only be warm started from a solution trained on the exact same data set as the model it is warm starting from.
warmFromSameDataOnly() - Method in interface jsat.regression.WarmRegressor
Some models can only be warm started from a solution trained on the exact same data set as the model it is warm starting from.
WarmRegressor - Interface in jsat.regression
This interface is meant for models that support efficient warm starting from the solution of a previous model.
warning - Variable in class jsat.driftdetectors.BaseDriftDetector
Set to true to indicate that a warning mode in in effect.
wDot(Vec) - Method in class jsat.classifiers.linear.StochasticSTLinearL1
Computes StochasticSTLinearL1.w.Vec.dot(jsat.linear.Vec)x and does so by rescaling x as needed automatically and efficiently, even if x is sparse.
weakCompareAndSet(double, double) - Method in class jsat.utils.concurrent.AtomicDouble
 
weakCompareAndSet(int, double, double) - Method in class jsat.utils.concurrent.AtomicDoubleArray
Atomically sets the element at position i to the given updated value if the current value == the expected value.
Weibull - Class in jsat.distributions
 
Weibull(double, double) - Constructor for class jsat.distributions.Weibull
 
weightClass - Variable in class jsat.classifiers.neuralnetwork.LVQ
Array of the class that each learning vector represents
weightedDot(Vec, Vec, Vec) - Static method in class jsat.linear.VecOps
Computes the weighted dot product of ∀ i ∈ |w| w_i x_i y_i
WeightedEuclideanDistance - Class in jsat.linear.distancemetrics
Implements the weighted Euclidean distance such that d(a, b) = ∀ i ∈ |w| wi (xi-yi)2
When used with a weight vector of ones, it degenerates into the EuclideanDistance.
WeightedEuclideanDistance(Vec) - Constructor for class jsat.linear.distancemetrics.WeightedEuclideanDistance
Creates a new weighted Euclidean distance metric using the given set of weights.
WeightInitializer - Interface in jsat.classifiers.neuralnetwork.initializers
This interface specifies the method of initializing the weight connections in a neural network.
weightMatrix - Variable in class jsat.classifiers.svm.extended.OnlineAMM
 
WeightRegularizer - Interface in jsat.classifiers.neuralnetwork.regularizers
This interface defines the contract for applying a regularization scheme to the weight and bias values of a laying in a neural network.
weights - Variable in class jsat.classifiers.neuralnetwork.LVQ
Array containing the learning vectors
weights - Variable in class jsat.classifiers.svm.PlattSMO
Weight values to apply to each data point
weights - Variable in class jsat.classifiers.svm.SVMnoBias
Weight values to apply to each data point
weights - Variable in class jsat.regression.evaluation.TotalHistoryRegressionScore
The weight of importance for each point
whichPath(DataPoint) - Method in class jsat.classifiers.trees.DecisionStump
Determines which split path this data point would follow from this decision stump.
WhitenedPCA - Class in jsat.datatransform
An extension of PCA that attempts to capture the variance, and make the variables in the output space independent from each-other.
WhitenedPCA() - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA transform that uses up to 50 dimensions for the transformed space.
WhitenedPCA(int) - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA transform
WhitenedPCA(double, int) - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA transform
WhitenedPCA(DataSet, double, int) - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA from the given dataset
WhitenedPCA(DataSet, double) - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA, the dimensions will be chosen so that the subset of dimensions is of full rank.
WhitenedPCA(DataSet) - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA.
WhitenedPCA(DataSet, int) - Constructor for class jsat.datatransform.WhitenedPCA
Creates a new WhitenedPCA.
WhitenedZCA - Class in jsat.datatransform
An extension of WhitenedPCA, is the Whitened Zero Component Analysis.
WhitenedZCA() - Constructor for class jsat.datatransform.WhitenedZCA
Creates a new WhitenedZCA transform that uses up to 50 dimensions for the transformed space.
WhitenedZCA(int) - Constructor for class jsat.datatransform.WhitenedZCA
Creates a new WhitenedZCA transform
WhitenedZCA(double, int) - Constructor for class jsat.datatransform.WhitenedZCA
Creates a new WhitenedZCA transform
WhitenedZCA(DataSet, double) - Constructor for class jsat.datatransform.WhitenedZCA
Creates a new Whitened ZCA transform from the given data.
WhitenedZCA(DataSet) - Constructor for class jsat.datatransform.WhitenedZCA
Creates a new Whitened ZCA transform from the given data.
wins - Variable in class jsat.classifiers.neuralnetwork.LVQ
Records the number of times each neuron won and was off the correct class during training.
WolfeNWLineSearch - Class in jsat.math.optimization
An implementation of the Wolfe Line Search algorithm described by Nocedal and Wright in Numerical Optimization (2nd edition) on pages 59-63.
WolfeNWLineSearch() - Constructor for class jsat.math.optimization.WolfeNWLineSearch
Creates a new Wolfe line search with WolfeNWLineSearch.setC1(double) set to 1e-4 and WolfeNWLineSearch.setC2(double) to 0.9
WolfeNWLineSearch(double, double) - Constructor for class jsat.math.optimization.WolfeNWLineSearch
Creates a new Wolfe line search
WolfeNWLineSearch.AlphaInit - Enum in jsat.math.optimization
 
WordCount - Class in jsat.text.wordweighting
Provides a simple representation of bag-of-word vectors by simply using the number of occurrences for a word in a document as the weight for said word.
WordCount() - Constructor for class jsat.text.wordweighting.WordCount
 
wordCounts - Variable in class jsat.text.HashedTextDataLoader
Temporary space to use when creating vectors
wordCounts - Variable in class jsat.text.TextDataLoader
Temporary space to use when creating vectors
wordIndex - Variable in class jsat.text.TextDataLoader
Maps words to their associated index in an array
WordWeighting - Class in jsat.text.wordweighting
WordWeighting is an index function specifically mean for modifying the values of a vectors used for a bag-of-words representation of text data.
WordWeighting() - Constructor for class jsat.text.wordweighting.WordWeighting
 
workSpace - Variable in class jsat.text.HashedTextDataLoader
Temporary work space to use for tokenization
workSpace - Variable in class jsat.text.TextDataLoader
Temporary work space to use for tokenization
write(DataSet<?>, Path) - Static method in class jsat.io.CSV
Writes out the given dataset as a CSV file.
write(DataSet<?>, Writer) - Static method in class jsat.io.CSV
Writes out the given dataset as a CSV file.
write(DataSet<?>, Path, char) - Static method in class jsat.io.CSV
Writes out the given dataset as a CSV file.
write(DataSet<?>, Writer, char) - Static method in class jsat.io.CSV
Writes out the given dataset as a CSV file.
write(ClassificationDataSet, OutputStream) - Static method in class jsat.io.LIBSVMLoader
Writes out the given classification data set as a LIBSVM data file
write(RegressionDataSet, OutputStream) - Static method in class jsat.io.LIBSVMLoader
Writes out the given regression data set as a LIBSVM data file
writeArffFile(DataSet, OutputStream) - Static method in class jsat.ARFFLoader
 
writeArffFile(DataSet, OutputStream, String) - Static method in class jsat.ARFFLoader
Writes out the dataset as an ARFF file to the given stream.
writeData(DataSet<Type>, OutputStream) - Static method in class jsat.io.JSATData
This method writes out a JSAT dataset to a binary format that can be read in again later, and could be read in other languages.

The format that is used will understand both ClassificationDataSet and RegressionDataSet datasets as special cases, and will store the target values in the binary file.
writeData(DataSet<Type>, OutputStream, JSATData.FloatStorageMethod) - Static method in class jsat.io.JSATData
This method writes out a JSAT dataset to a binary format that can be read in again later, and could be read in other languages.

The format that is used will understand both ClassificationDataSet and RegressionDataSet datasets as special cases, and will store the target values in the binary file.
writeFP(double, DataOutputStream) - Method in enum jsat.io.JSATData.FloatStorageMethod
 

X

X - Variable in class jsat.clustering.kmeans.KernelKMeans
The list of data points that this was trained on
xi - Static variable in class jsat.text.GreekLetters
 
XMeans - Class in jsat.clustering.kmeans
This class provides a method of performing KMeans clustering when the value of K is not known.
XMeans() - Constructor for class jsat.clustering.kmeans.XMeans
 
XMeans(KMeans) - Constructor for class jsat.clustering.kmeans.XMeans
 
XMeans(XMeans) - Constructor for class jsat.clustering.kmeans.XMeans
Copy constructor
XOR128 - Class in jsat.utils.random
A fast PRNG that produces medium quality random numbers that passes the diehard tests.
XOR128() - Constructor for class jsat.utils.random.XOR128
Creates a new PRNG with a random seed
XOR128(long) - Constructor for class jsat.utils.random.XOR128
Creates a new PRNG
XOR96 - Class in jsat.utils.random
A fast PRNG that produces medium quality random numbers.
XOR96() - Constructor for class jsat.utils.random.XOR96
Creates a new PRNG with a random seed
XOR96(long) - Constructor for class jsat.utils.random.XOR96
Creates a new PRNG
XORWOW - Class in jsat.utils.random
A very fast PRNG that passes the Diehard tests.
XORWOW() - Constructor for class jsat.utils.random.XORWOW
Creates a new PRNG with a random seed
XORWOW(long) - Constructor for class jsat.utils.random.XORWOW
Creates a new PRNG

Z

Zeroin - Class in jsat.math.rootfinding
 
Zeroin() - Constructor for class jsat.math.rootfinding.Zeroin
 
ZeroMeanTransform - Class in jsat.datatransform
A transformation to shift all numeric variables so that their mean is zero
ZeroMeanTransform() - Constructor for class jsat.datatransform.ZeroMeanTransform
Creates a new object for transforming datapoints by centering the data
ZeroMeanTransform(DataSet) - Constructor for class jsat.datatransform.ZeroMeanTransform
Creates a new object for transforming datapoints by centering the data
zeroOut() - Method in class jsat.linear.DenseMatrix
 
zeroOut() - Method in class jsat.linear.GenericMatrix
 
zeroOut() - Method in class jsat.linear.Matrix
Alters the current matrix so that all values are equal to zero.
zeroOut() - Method in class jsat.linear.MatrixOfVecs
 
zeroOut() - Method in class jsat.linear.ScaledVector
 
zeroOut() - Method in class jsat.linear.ShiftedVec
 
zeroOut() - Method in class jsat.linear.SparseMatrix
 
zeroOut() - Method in class jsat.linear.SparseVector
 
zeroOut() - Method in class jsat.linear.Vec
Zeroes out all values in this vector

This method should be overloaded for a serious implementation.
zeroOut() - Method in class jsat.linear.VecWithNorm
 
zeros(int) - Static method in class jsat.linear.Vec
Creates a dense vector full of zeros.
zeta(double) - Static method in class jsat.math.SpecialMath
Computes the Riemann zeta function ζ(x) for some value of x

This method may return:
Double.NaN for x = 1 (would be complex infinity)

NOTE: This method is not yet complete in terms of accuracy.
zeta - Static variable in class jsat.text.GreekLetters
 
ZTest - Class in jsat.testing.onesample
 
ZTest() - Constructor for class jsat.testing.onesample.ZTest
 
ZTest(double, double, int) - Constructor for class jsat.testing.onesample.ZTest
 
ZTest(StatisticTest.H1, double, double, int) - Constructor for class jsat.testing.onesample.ZTest
 
ZTest(Vec) - Constructor for class jsat.testing.onesample.ZTest
 
ZTest(StatisticTest.H1, Vec) - Constructor for class jsat.testing.onesample.ZTest
 
zTransform(double, double, double) - Static method in class jsat.distributions.Normal
 
zTransform(double) - Method in class jsat.distributions.Normal
 
A B C D E F G H I J K L M N O P Q R S T U V W X Z 
Skip navigation links

Copyright © 2017. All rights reserved.