public class OrdinaryKriging extends Object implements Regressor, Parameterized
error
value is applied, Kriging
becomes equivalent to Gaussian Processes Regression.Modifier and Type | Class and Description |
---|---|
static class |
OrdinaryKriging.PowVariogram |
static interface |
OrdinaryKriging.Variogram |
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_ERROR
The default error value is
DEFAULT_ERROR |
static double |
DEFAULT_NUGGET
The default nugget value is 0.1
|
Constructor and Description |
---|
OrdinaryKriging()
Creates a new Ordinary Kriging with a small error value using the
power variogram. |
OrdinaryKriging(OrdinaryKriging.Variogram vari)
Creates a new Ordinary Kriging with a small error value
|
OrdinaryKriging(OrdinaryKriging.Variogram vari,
double error)
Creates a new Ordinary Kriging
|
OrdinaryKriging(OrdinaryKriging.Variogram vari,
double error,
double nugget)
Creates a new Ordinary Kriging.
|
Modifier and Type | Method and Description |
---|---|
OrdinaryKriging |
clone() |
double |
getMeasurementError()
Returns the measurement error used for Kriging, which is equivalent to
altering the diagonal values of the covariance.
|
double |
getNugget()
Returns the nugget value passed to the variogram during training.
|
Parameter |
getParameter(String paramName)
Returns the parameter with the given name.
|
List<Parameter> |
getParameters()
Returns the list of parameters that can be altered for this learner.
|
double |
regress(DataPoint data) |
void |
setMeasurementError(double error)
Sets the measurement error used for Kriging, which is equivalent to
altering the diagonal values of the covariance.
|
void |
setNugget(double nugget)
Sets the nugget value passed to the variogram during training.
|
boolean |
supportsWeightedData() |
void |
train(RegressionDataSet dataSet) |
void |
train(RegressionDataSet dataSet,
ExecutorService threadPool) |
public static final double DEFAULT_NUGGET
public static final double DEFAULT_ERROR
DEFAULT_ERROR
public OrdinaryKriging(OrdinaryKriging.Variogram vari, double error, double nugget)
vari
- the variogram to fit to the dataerror
- the global measurement errornugget
- the nugget value to add to the variogrampublic OrdinaryKriging(OrdinaryKriging.Variogram vari, double error)
vari
- the variogram to fit to the dataerror
- the global measurement errorpublic OrdinaryKriging(OrdinaryKriging.Variogram vari)
vari
- the variogram to fit to the datapublic OrdinaryKriging()
power
variogram.public void train(RegressionDataSet dataSet, ExecutorService threadPool)
public void train(RegressionDataSet dataSet)
public boolean supportsWeightedData()
supportsWeightedData
in interface Regressor
public OrdinaryKriging clone()
public void setMeasurementError(double error)
error
- the measurement error for all data pointspublic double getMeasurementError()
public void setNugget(double nugget)
nugget
- the new nugget valueArithmeticException
- if a negative nugget value is providedpublic double getNugget()
public List<Parameter> getParameters()
Parameterized
getParameters
in interface Parameterized
public Parameter getParameter(String paramName)
Parameterized
getParameter
in interface Parameterized
paramName
- the name of the parameter to obtainCopyright © 2017. All rights reserved.