public class AROW extends BaseUpdateableClassifier implements BinaryScoreClassifier, Parameterized, SingleWeightVectorModel
Modifier | Constructor and Description |
---|---|
|
AROW()
Creates a new AROW learner
|
protected |
AROW(AROW other)
Copy constructor
|
|
AROW(double r,
boolean diagonalOnly)
Creates a new AROW learner
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
classify(DataPoint data)
Performs classification on the given data point.
|
AROW |
clone() |
double |
getBias()
Returns the bias term used for the model, or 0 of the model does not
support or was not trained with a bias term.
|
double |
getBias(int index)
Returns the bias term used with the weight vector for the given class
index.
|
Parameter |
getParameter(String paramName)
Returns the parameter with the given name.
|
List<Parameter> |
getParameters()
Returns the list of parameters that can be altered for this learner.
|
double |
getR()
Returns the regularization parameter
|
Vec |
getRawWeight()
Returns the only weight vector used for the model
|
Vec |
getRawWeight(int index)
Returns the raw weight vector associated with the given class index.
|
double |
getScore(DataPoint dp)
Returns the numeric score for predicting a class of a given data point,
where the sign of the value indicates which class the data point is
predicted to belong to.
|
Vec |
getWeightVec()
Returns the weight vector used to compute results via a dot product.
|
static Distribution |
guessR(DataSet d)
Guess the distribution to use for the regularization term
r . |
boolean |
isDiagonalOnly()
Returns
true if the covariance matrix is restricted to its diagonal entries |
int |
numWeightsVecs()
Returns the number of weight vectors that can be returned.
|
void |
setDiagonalOnly(boolean diagonalOnly)
Using the full covariance matrix requires O(d2) work on
mistakes, where d is the dimension of the data.
|
void |
setR(double r)
Sets the r parameter of AROW, which controls the regularization.
|
void |
setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting)
Prepares the classifier to begin learning from its
UpdateableClassifier.update(jsat.classifiers.DataPoint, int) method. |
boolean |
supportsWeightedData()
Indicates whether the model knows how to train using weighted data points.
|
void |
update(DataPoint dataPoint,
int targetClass)
Updates the classifier by giving it a new data point to learn from.
|
getEpochs, setEpochs, trainC, trainC, trainEpochs
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
trainC, trainC
public AROW()
public AROW(double r, boolean diagonalOnly)
r
- the regularization parameterdiagonalOnly
- whether or not to use only the diagonal of the covariancesetR(double)
,
setDiagonalOnly(boolean)
protected AROW(AROW other)
other
- object to copypublic void setDiagonalOnly(boolean diagonalOnly)
diagonalOnly
- true
to use only the diagonal of the covariancepublic boolean isDiagonalOnly()
true
if the covariance matrix is restricted to its diagonal entriestrue
if the covariance matrix is restricted to its diagonal entriespublic void setR(double r)
r
- the regularization parameter in (0, Inf)public double getR()
public Vec getWeightVec()
public AROW clone()
clone
in interface BinaryScoreClassifier
clone
in interface Classifier
clone
in interface UpdateableClassifier
clone
in class BaseUpdateableClassifier
public void setUp(CategoricalData[] categoricalAttributes, int numericAttributes, CategoricalData predicting)
UpdateableClassifier
UpdateableClassifier.update(jsat.classifiers.DataPoint, int)
method.setUp
in interface UpdateableClassifier
categoricalAttributes
- an array containing the categorical
attributes that will be in each data pointnumericAttributes
- the number of numeric attributes that will be in
each data pointpredicting
- the information for the target class that will be
predictedpublic void update(DataPoint dataPoint, int targetClass)
UpdateableClassifier
update
in interface UpdateableClassifier
dataPoint
- the data point to learntargetClass
- the target class of the data pointpublic CategoricalResults classify(DataPoint data)
Classifier
classify
in interface Classifier
data
- the data point to classifypublic double getScore(DataPoint dp)
BinaryScoreClassifier
getScore
in interface BinaryScoreClassifier
dp
- the data point to predict the class label ofpublic boolean supportsWeightedData()
Classifier
supportsWeightedData
in interface Classifier
public List<Parameter> getParameters()
Parameterized
getParameters
in interface Parameterized
public Parameter getParameter(String paramName)
Parameterized
getParameter
in interface Parameterized
paramName
- the name of the parameter to obtainpublic Vec getRawWeight()
SingleWeightVectorModel
getRawWeight
in interface SingleWeightVectorModel
public double getBias()
SingleWeightVectorModel
getBias
in interface SingleWeightVectorModel
public Vec getRawWeight(int index)
SimpleWeightVectorModel
ConstantVector
object may be returned. index = 0
should be usedgetRawWeight
in interface SimpleWeightVectorModel
index
- the class index to get the weight vector forpublic double getBias(int index)
SimpleWeightVectorModel
0
will be returned.index = 0
should be usedgetBias
in interface SimpleWeightVectorModel
index
- the class index to get the weight vector forpublic int numWeightsVecs()
SimpleWeightVectorModel
numWeightsVecs
in interface SimpleWeightVectorModel
SimpleWeightVectorModel.getRawWeight(int)
can be called.public static Distribution guessR(DataSet d)
r
.d
- the data set to get the guess forCopyright © 2017. All rights reserved.