public abstract class MultivariateKDE extends MultivariateDistributionSkeleton
KernelDensityEstimator
to the multivariate case.
This class provides a contract for implementations that provide a generalization of the KDE.Constructor and Description |
---|
MultivariateKDE() |
Modifier and Type | Method and Description |
---|---|
abstract MultivariateKDE |
clone() |
abstract KernelFunction |
getKernelFunction() |
abstract List<? extends VecPaired<VecPaired<Vec,Integer>,Double>> |
getNearby(Vec x)
Returns the list of vectors that have a non zero contribution to the density of the query point x.
|
abstract List<? extends VecPaired<VecPaired<Vec,Integer>,Double>> |
getNearbyRaw(Vec x)
Returns the list of vectors that have a non zero contribution to the density of the query point x.
|
abstract void |
scaleBandwidth(double scale)
A caller may want to increase or decrease the bandwidth after training
has been completed to get smoother model, or decrease it to observe
behavior.
|
logPdf, logPdf, pdf, setUsingData, setUsingData, setUsingData, setUsingDataList
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
pdf, sample, setUsingData, setUsingDataList
public abstract List<? extends VecPaired<VecPaired<Vec,Integer>,Double>> getNearby(Vec x)
x
- the query pointpublic abstract List<? extends VecPaired<VecPaired<Vec,Integer>,Double>> getNearbyRaw(Vec x)
x
- the query pointpublic abstract KernelFunction getKernelFunction()
public abstract void scaleBandwidth(double scale)
scale
- the value to scale the bandwidth usedpublic abstract MultivariateKDE clone()
clone
in interface MultivariateDistribution
clone
in class MultivariateDistributionSkeleton
Copyright © 2017. All rights reserved.