public class KernelRLS extends Object implements UpdateableRegressor, Parameterized
Modifier | Constructor and Description |
---|---|
protected |
KernelRLS(KernelRLS toCopy)
Copy constructor
|
|
KernelRLS(KernelTrick k,
double errorTolerance)
Creates a new Kernel RLS learner
|
Modifier and Type | Method and Description |
---|---|
KernelRLS |
clone() |
void |
finalizeModel()
Finalizes the model.
|
double |
getErrorTolerance()
Returns the projection approximation tolerance
|
int |
getModelSize()
Returns the number of basis vectors that make up the model
|
Parameter |
getParameter(String paramName)
Returns the parameter with the given name.
|
List<Parameter> |
getParameters()
Returns the list of parameters that can be altered for this learner.
|
double |
regress(DataPoint data) |
void |
setErrorTolerance(double v)
Sets the tolerance for errors in approximating a data point by projecting
it onto the set of basis vectors.
|
void |
setUp(CategoricalData[] categoricalAttributes,
int numericAttributes)
Prepares the classifier to begin learning from its
UpdateableRegressor.update(jsat.classifiers.DataPoint, double) method. |
boolean |
supportsWeightedData() |
void |
train(RegressionDataSet dataSet) |
void |
train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
update(DataPoint dataPoint,
double y_t)
Updates the classifier by giving it a new data point to learn from.
|
public KernelRLS(KernelTrick k, double errorTolerance)
k
- the kernel trick to useerrorTolerance
- the tolerance for errors in the projectionprotected KernelRLS(KernelRLS toCopy)
toCopy
- the object to copypublic void setErrorTolerance(double v)
v
- the approximation tolerancepublic double getErrorTolerance()
public int getModelSize()
public void finalizeModel()
setUp(jsat.classifiers.CategoricalData[], int)
public void train(RegressionDataSet dataSet, ExecutorService threadPool)
public void train(RegressionDataSet dataSet)
public boolean supportsWeightedData()
supportsWeightedData
in interface Regressor
public KernelRLS clone()
public void setUp(CategoricalData[] categoricalAttributes, int numericAttributes)
UpdateableRegressor
UpdateableRegressor.update(jsat.classifiers.DataPoint, double)
method.setUp
in interface UpdateableRegressor
categoricalAttributes
- an array containing the categorical
attributes that will be in each data pointnumericAttributes
- the number of numeric attributes that will be in
each data pointpublic void update(DataPoint dataPoint, double y_t)
UpdateableRegressor
update
in interface UpdateableRegressor
dataPoint
- the data point to learny_t
- the target value of the data pointpublic List<Parameter> getParameters()
Parameterized
getParameters
in interface Parameterized
public Parameter getParameter(String paramName)
Parameterized
getParameter
in interface Parameterized
paramName
- the name of the parameter to obtainCopyright © 2017. All rights reserved.