public class ROMMA extends BaseUpdateableClassifier implements BinaryScoreClassifier, SingleWeightVectorModel
Modifier | Constructor and Description |
---|---|
|
ROMMA()
Creates a new aggressive ROMMA classifier
|
|
ROMMA(boolean aggressive)
Creates a new ROMMA classifier
|
protected |
ROMMA(ROMMA other)
Copy constructor
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
classify(DataPoint data)
Performs classification on the given data point.
|
ROMMA |
clone() |
double |
getBias()
Returns the bias term used for the model, or 0 of the model does not
support or was not trained with a bias term.
|
double |
getBias(int index)
Returns the bias term used with the weight vector for the given class
index.
|
Vec |
getRawWeight()
Returns the only weight vector used for the model
|
Vec |
getRawWeight(int index)
Returns the raw weight vector associated with the given class index.
|
double |
getScore(DataPoint dp)
Returns the numeric score for predicting a class of a given data point,
where the sign of the value indicates which class the data point is
predicted to belong to.
|
Vec |
getWeightVec()
Returns the weight vector used to compute results via a dot product.
|
boolean |
isAggressive()
Returns whether or not the aggressive variant of ROMMA is used
|
boolean |
isUseBias()
Returns whether or not an implicit bias term is in use
|
int |
numWeightsVecs()
Returns the number of weight vectors that can be returned.
|
void |
setAggressive(boolean aggressive)
Determines whether the normal or aggressive ROMMA algorithm will be used.
|
void |
setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting)
Prepares the classifier to begin learning from its
UpdateableClassifier.update(jsat.classifiers.DataPoint, int) method. |
void |
setUseBias(boolean useBias)
Sets whether or not an implicit bias term will be added to the data set
|
boolean |
supportsWeightedData()
Indicates whether the model knows how to train using weighted data points.
|
void |
update(DataPoint dataPoint,
int targetClass)
Updates the classifier by giving it a new data point to learn from.
|
getEpochs, setEpochs, trainC, trainC, trainEpochs
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
trainC, trainC
public ROMMA()
public ROMMA(boolean aggressive)
aggressive
- whether or not to use the aggressive variantprotected ROMMA(ROMMA other)
other
- the ROMMA object to copypublic ROMMA clone()
clone
in interface BinaryScoreClassifier
clone
in interface Classifier
clone
in interface UpdateableClassifier
clone
in class BaseUpdateableClassifier
public void setAggressive(boolean aggressive)
aggressive
- true
to use the aggressive variantpublic boolean isAggressive()
true
if the aggressive variant of ROMMA is usedpublic void setUseBias(boolean useBias)
useBias
- true
to add an implicit bias termpublic boolean isUseBias()
true
if a bias term is in usepublic Vec getWeightVec()
public Vec getRawWeight()
SingleWeightVectorModel
getRawWeight
in interface SingleWeightVectorModel
public double getBias()
SingleWeightVectorModel
getBias
in interface SingleWeightVectorModel
public Vec getRawWeight(int index)
SimpleWeightVectorModel
ConstantVector
object may be returned. index = 0
should be usedgetRawWeight
in interface SimpleWeightVectorModel
index
- the class index to get the weight vector forpublic double getBias(int index)
SimpleWeightVectorModel
0
will be returned.index = 0
should be usedgetBias
in interface SimpleWeightVectorModel
index
- the class index to get the weight vector forpublic int numWeightsVecs()
SimpleWeightVectorModel
numWeightsVecs
in interface SimpleWeightVectorModel
SimpleWeightVectorModel.getRawWeight(int)
can be called.public void setUp(CategoricalData[] categoricalAttributes, int numericAttributes, CategoricalData predicting)
UpdateableClassifier
UpdateableClassifier.update(jsat.classifiers.DataPoint, int)
method.setUp
in interface UpdateableClassifier
categoricalAttributes
- an array containing the categorical
attributes that will be in each data pointnumericAttributes
- the number of numeric attributes that will be in
each data pointpredicting
- the information for the target class that will be
predictedpublic void update(DataPoint dataPoint, int targetClass)
UpdateableClassifier
update
in interface UpdateableClassifier
dataPoint
- the data point to learntargetClass
- the target class of the data pointpublic CategoricalResults classify(DataPoint data)
Classifier
classify
in interface Classifier
data
- the data point to classifypublic double getScore(DataPoint dp)
BinaryScoreClassifier
getScore
in interface BinaryScoreClassifier
dp
- the data point to predict the class label ofpublic boolean supportsWeightedData()
Classifier
supportsWeightedData
in interface Classifier
Copyright © 2017. All rights reserved.