public class SMIDAS extends StochasticSTLinearL1
StochasticSTLinearL1.setReScale(boolean)
StochasticSTLinearL1.Loss
bias, DEFAULT_EPOCHS, DEFAULT_LOSS, DEFAULT_REG, epochs, lambda, loss, maxScaled, minScaled, obvMax, obvMin, reScale, w
Constructor and Description |
---|
SMIDAS(double eta)
Creates a new SMIDAS learner
|
SMIDAS(double eta,
int epochs,
double lambda,
StochasticSTLinearL1.Loss loss)
Creates a new SMIDAS learner
|
SMIDAS(double eta,
int epochs,
double lambda,
StochasticSTLinearL1.Loss loss,
boolean reScale)
Creates a new SMIDAS learner
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
classify(DataPoint data)
Performs classification on the given data point.
|
SMIDAS |
clone() |
double |
getEta()
Returns the current learning rate used during training
|
double |
regress(DataPoint data) |
void |
setEta(double eta)
Sets the learning rate used during training
|
boolean |
supportsWeightedData()
Indicates whether the model knows how to train using weighted data points.
|
void |
train(RegressionDataSet dataSet) |
void |
train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
trainC(ClassificationDataSet dataSet)
Trains the classifier and constructs a model for classification using the
given data set.
|
void |
trainC(ClassificationDataSet dataSet,
ExecutorService threadPool)
Trains the classifier and constructs a model for classification using the
given data set.
|
getBias, getBias, getEpochs, getLambda, getLoss, getMaxScaled, getMinScaled, getParameter, getParameters, getRawWeight, getRawWeight, getW, getWRaw, isReScale, numWeightsVecs, setEpochs, setLambda, setLoss, setMaxScaled, setMinScaled, setReScale, wDot
public SMIDAS(double eta)
eta
- the learning rate for each iterationpublic SMIDAS(double eta, int epochs, double lambda, StochasticSTLinearL1.Loss loss)
eta
- the learning rate for each iterationepochs
- the number of learning iterationslambda
- the regularization penaltyloss
- the loss function to usepublic SMIDAS(double eta, int epochs, double lambda, StochasticSTLinearL1.Loss loss, boolean reScale)
eta
- the learning rate for each iterationepochs
- the number of learning iterationslambda
- the regularization penaltyloss
- the loss function to usereScale
- whether or not to rescale the feature valuespublic void setEta(double eta)
eta
- the learning rate to usepublic double getEta()
public CategoricalResults classify(DataPoint data)
Classifier
data
- the data point to classifypublic double regress(DataPoint data)
public void trainC(ClassificationDataSet dataSet, ExecutorService threadPool)
Classifier
dataSet
- the data set to train onthreadPool
- the source of threads to use.public void trainC(ClassificationDataSet dataSet)
Classifier
dataSet
- the data set to train onpublic void train(RegressionDataSet dataSet, ExecutorService threadPool)
public void train(RegressionDataSet dataSet)
public boolean supportsWeightedData()
Classifier
public SMIDAS clone()
clone
in interface Classifier
clone
in interface Regressor
clone
in class StochasticSTLinearL1
Copyright © 2017. All rights reserved.