Modifier and Type | Field and Description |
---|---|
protected List<DataPoint> |
SimpleDataSet.dataPoints |
Modifier and Type | Method and Description |
---|---|
DataPoint |
SimpleDataSet.getDataPoint(int i) |
abstract DataPoint |
DataSet.getDataPoint(int i)
Returns the i'th data point in this set.
|
Modifier and Type | Method and Description |
---|---|
List<DataPoint> |
SimpleDataSet.getBackingList() |
Iterator<DataPoint> |
DataSet.getDataPointIterator()
Returns an iterator that will iterate over all data points in the set.
|
List<DataPoint> |
DataSet.getDataPoints()
Creates a list containing the same DataPoints in this set.
|
Modifier and Type | Method and Description |
---|---|
void |
SimpleDataSet.add(DataPoint dp)
Adds a new datapoint to this set.
|
void |
SimpleDataSet.setDataPoint(int i,
DataPoint dp) |
abstract void |
DataSet.setDataPoint(int i,
DataPoint dp)
Replaces an already existing data point with the one given.
|
Constructor and Description |
---|
SimpleDataSet(List<DataPoint> dataPoints) |
Modifier and Type | Field and Description |
---|---|
protected List<DataPoint> |
ClassificationDataSet.datapoints |
Modifier and Type | Method and Description |
---|---|
DataPoint |
DataPoint.clone()
Creates a deep clone of this data point, such that altering either data point does not effect the other one.
|
DataPoint |
DataPointPair.getDataPoint() |
DataPoint |
ClassificationDataSet.getDataPoint(int i)
Returns the i'th data point from the data set
|
Modifier and Type | Method and Description |
---|---|
List<DataPoint> |
ClassificationDataSet.getSamples(int category)
Returns the list of all examples that belong to the given category.
|
Modifier and Type | Method and Description |
---|---|
void |
ClassificationDataSet.addDataPoint(DataPoint dp,
int classification)
Creates a new data point and add it
|
CategoricalResults |
Rocchio.classify(DataPoint data) |
CategoricalResults |
RegressorToClassifier.classify(DataPoint data) |
CategoricalResults |
PriorClassifier.classify(DataPoint data) |
CategoricalResults |
OneVSOne.classify(DataPoint data) |
CategoricalResults |
OneVSAll.classify(DataPoint data) |
CategoricalResults |
MultinomialLogisticRegression.classify(DataPoint data) |
CategoricalResults |
MajorityVote.classify(DataPoint data) |
CategoricalResults |
DDAG.classify(DataPoint data) |
CategoricalResults |
Classifier.classify(DataPoint data)
Performs classification on the given data point.
|
double |
RegressorToClassifier.getScore(DataPoint dp) |
void |
DataPointPair.setDataPoint(DataPoint dataPoint) |
void |
ClassificationDataSet.setDataPoint(int i,
DataPoint dp) |
void |
UpdateableClassifier.update(DataPoint dataPoint,
int targetClass)
Updates the classifier by giving it a new data point to learn from.
|
Constructor and Description |
---|
DataPointPair(DataPoint dataPoint,
P pair) |
Constructor and Description |
---|
ClassificationDataSet(List<DataPoint> data,
int predicting)
Creates a new data set for classification problems from the given list of data points.
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
ODE.classify(DataPoint data) |
CategoricalResults |
NaiveBayesUpdateable.classify(DataPoint data) |
CategoricalResults |
NaiveBayes.classify(DataPoint data) |
CategoricalResults |
MultinomialNaiveBayes.classify(DataPoint data) |
CategoricalResults |
ConditionalProbabilityTable.classify(DataPoint data) |
CategoricalResults |
BestClassDistribution.classify(DataPoint data) |
CategoricalResults |
AODE.classify(DataPoint data) |
void |
ODE.update(DataPoint dataPoint,
int targetClass) |
void |
NaiveBayesUpdateable.update(DataPoint dataPoint,
int targetClass) |
void |
MultinomialNaiveBayes.update(DataPoint dataPoint,
int targetClass) |
void |
AODE.update(DataPoint dataPoint,
int targetClass) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
DiscreteBayesNetwork.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
Wagging.classify(DataPoint data) |
CategoricalResults |
UpdatableStacking.classify(DataPoint data) |
CategoricalResults |
Stacking.classify(DataPoint data) |
CategoricalResults |
SAMME.classify(DataPoint data) |
CategoricalResults |
ModestAdaBoost.classify(DataPoint data) |
CategoricalResults |
LogitBoost.classify(DataPoint data) |
CategoricalResults |
EmphasisBoost.classify(DataPoint data) |
CategoricalResults |
Bagging.classify(DataPoint data) |
CategoricalResults |
ArcX4.classify(DataPoint data) |
CategoricalResults |
AdaBoostM1.classify(DataPoint data) |
double |
ModestAdaBoost.getScore(DataPoint dp) |
double |
EmphasisBoost.getScore(DataPoint dp) |
protected double |
LogitBoost.P(DataPoint x)
Returns the probability that a given data point belongs to class 1
|
double |
Wagging.regress(DataPoint data) |
double |
UpdatableStacking.regress(DataPoint data) |
double |
Stacking.regress(DataPoint data) |
double |
Bagging.regress(DataPoint data) |
void |
UpdatableStacking.update(DataPoint dataPoint,
double targetValue) |
void |
UpdatableStacking.update(DataPoint dataPoint,
int targetClass) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
PlattCalibration.classify(DataPoint data) |
CategoricalResults |
IsotonicCalibration.classify(DataPoint data) |
double |
BinaryScoreClassifier.getScore(DataPoint dp)
Returns the numeric score for predicting a class of a given data point,
where the sign of the value indicates which class the data point is
predicted to belong to.
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
NearestNeighbour.classify(DataPoint data) |
CategoricalResults |
LWL.classify(DataPoint data) |
CategoricalResults |
DANN.classify(DataPoint data) |
double |
NearestNeighbour.regress(DataPoint data) |
double |
LWL.regress(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
StochasticMultinomialLogisticRegression.classify(DataPoint data) |
CategoricalResults |
STGD.classify(DataPoint data) |
CategoricalResults |
SPA.classify(DataPoint data) |
CategoricalResults |
SMIDAS.classify(DataPoint data) |
CategoricalResults |
SCW.classify(DataPoint data) |
CategoricalResults |
SCD.classify(DataPoint data) |
CategoricalResults |
ROMMA.classify(DataPoint data) |
CategoricalResults |
PassiveAggressive.classify(DataPoint data) |
CategoricalResults |
NHERD.classify(DataPoint data) |
CategoricalResults |
NewGLMNET.classify(DataPoint data) |
CategoricalResults |
LogisticRegressionDCD.classify(DataPoint data) |
CategoricalResults |
LinearSGD.classify(DataPoint data) |
CategoricalResults |
LinearL1SCD.classify(DataPoint data) |
CategoricalResults |
LinearBatch.classify(DataPoint data) |
CategoricalResults |
BBR.classify(DataPoint data) |
CategoricalResults |
AROW.classify(DataPoint data) |
CategoricalResults |
ALMA2.classify(DataPoint data) |
double |
STGD.getScore(DataPoint dp) |
double |
SCW.getScore(DataPoint dp) |
double |
ROMMA.getScore(DataPoint dp) |
double |
PassiveAggressive.getScore(DataPoint dp) |
double |
NHERD.getScore(DataPoint dp) |
double |
AROW.getScore(DataPoint dp) |
double |
ALMA2.getScore(DataPoint dp) |
double |
STGD.regress(DataPoint data) |
double |
SMIDAS.regress(DataPoint data) |
double |
SCD.regress(DataPoint data) |
double |
PassiveAggressive.regress(DataPoint data) |
double |
LinearSGD.regress(DataPoint data) |
double |
LinearL1SCD.regress(DataPoint data) |
double |
LinearBatch.regress(DataPoint data) |
void |
STGD.update(DataPoint dataPoint,
double y) |
void |
PassiveAggressive.update(DataPoint dataPoint,
double targetValue) |
void |
LinearSGD.update(DataPoint dataPoint,
double targetValue) |
void |
STGD.update(DataPoint dataPoint,
int targetClass) |
void |
SPA.update(DataPoint dataPoint,
int targetClass) |
void |
SCW.update(DataPoint dataPoint,
int targetClass) |
void |
ROMMA.update(DataPoint dataPoint,
int targetClass) |
void |
PassiveAggressive.update(DataPoint dataPoint,
int targetClass) |
void |
NHERD.update(DataPoint dataPoint,
int targetClass) |
void |
LinearSGD.update(DataPoint dataPoint,
int targetClass) |
void |
AROW.update(DataPoint dataPoint,
int targetClass) |
void |
ALMA2.update(DataPoint dataPoint,
int targetClass) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
Projectron.classify(DataPoint data) |
CategoricalResults |
OSKL.classify(DataPoint data) |
CategoricalResults |
KernelSGD.classify(DataPoint data) |
CategoricalResults |
Forgetron.classify(DataPoint data) |
CategoricalResults |
DUOL.classify(DataPoint data) |
CategoricalResults |
CSKLRBatch.classify(DataPoint data) |
CategoricalResults |
CSKLR.classify(DataPoint data) |
CategoricalResults |
BOGD.classify(DataPoint data) |
CategoricalResults |
ALMA2K.classify(DataPoint data) |
double |
Projectron.getScore(DataPoint dp) |
double |
OSKL.getScore(DataPoint dp) |
double |
Forgetron.getScore(DataPoint dp) |
double |
DUOL.getScore(DataPoint dp) |
double |
BOGD.getScore(DataPoint dp) |
double |
ALMA2K.getScore(DataPoint dp) |
double |
KernelSGD.regress(DataPoint data) |
void |
KernelSGD.update(DataPoint dataPoint,
double targetValue) |
void |
Projectron.update(DataPoint dataPoint,
int targetClass) |
void |
OSKL.update(DataPoint dataPoint,
int targetClass) |
void |
KernelSGD.update(DataPoint dataPoint,
int targetClass) |
void |
Forgetron.update(DataPoint dataPoint,
int targetClass) |
void |
DUOL.update(DataPoint dataPoint,
int targetClass) |
void |
CSKLR.update(DataPoint dataPoint,
int targetClass) |
void |
BOGD.update(DataPoint dataPoint,
int targetClass) |
void |
ALMA2K.update(DataPoint dataPoint,
int targetClass) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
RBFNet.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
SOM.classify(DataPoint data) |
CategoricalResults |
RBFNet.classify(DataPoint data) |
CategoricalResults |
Perceptron.classify(DataPoint data) |
CategoricalResults |
LVQLLC.classify(DataPoint data) |
CategoricalResults |
LVQ.classify(DataPoint data) |
CategoricalResults |
DReDNetSimple.classify(DataPoint data) |
CategoricalResults |
BackPropagationNet.classify(DataPoint data) |
double |
Perceptron.getScore(DataPoint dp) |
double |
RBFNet.regress(DataPoint data) |
double |
BackPropagationNet.regress(DataPoint data) |
DataPoint |
RBFNet.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
OnlineAMM.classify(DataPoint data) |
CategoricalResults |
CPM.classify(DataPoint data) |
double |
CPM.getScore(DataPoint dp) |
void |
OnlineAMM.update(DataPoint dataPoint,
int y_t) |
protected int |
OnlineAMM.update(DataPoint dataPoint,
int y_t,
int z_t)
Performs the work for an update.
|
Modifier and Type | Method and Description |
---|---|
void |
ImpurityScore.addPoint(DataPoint dp,
int targetClass)
Adds one more point to the impurity score
|
CategoricalResults |
TreeNodeVisitor.classify(DataPoint dp) |
CategoricalResults |
RandomForest.classify(DataPoint data) |
CategoricalResults |
ID3.classify(DataPoint data) |
CategoricalResults |
ExtraTree.classify(DataPoint data) |
CategoricalResults |
ERTrees.classify(DataPoint data) |
CategoricalResults |
DecisionTree.classify(DataPoint data) |
CategoricalResults |
DecisionStump.classify(DataPoint data) |
abstract int |
TreeNodeVisitor.getPath(DataPoint dp)
Returns the path down the tree the given data point would have taken, or
-1 if this node was a leaf node OR if a missing value prevent traversal
down the path
|
int |
DecisionTree.Node.getPath(DataPoint dp) |
CategoricalResults |
TreeNodeVisitor.localClassify(DataPoint dp)
Returns the classification result that would have been obtained if the
current node was a leaf node.
|
CategoricalResults |
DecisionTree.Node.localClassify(DataPoint dp) |
double |
TreeNodeVisitor.localRegress(DataPoint dp)
Returns the regression result that would have been obtained if the
current node was a leaf node.
|
double |
DecisionTree.Node.localRegress(DataPoint dp) |
double |
TreeNodeVisitor.regress(DataPoint dp)
Performs regression on the given data point by following it down the tree
until it finds the correct terminal node.
|
double |
RandomForest.regress(DataPoint data) |
double |
ExtraTree.regress(DataPoint data) |
double |
ERTrees.regress(DataPoint data) |
double |
DecisionTree.regress(DataPoint data) |
double |
DecisionStump.regress(DataPoint data) |
void |
ImpurityScore.removePoint(DataPoint dp,
int targetClass)
Removes one point from the impurity score
|
int |
DecisionStump.whichPath(DataPoint data)
Determines which split path this data point would follow from this decision stump.
|
Modifier and Type | Method and Description |
---|---|
List<List<DataPoint>> |
ClustererBase.cluster(DataSet dataSet) |
List<List<DataPoint>> |
Clusterer.cluster(DataSet dataSet)
Performs clustering on the given data set.
|
List<List<DataPoint>> |
DBSCAN.cluster(DataSet dataSet,
double eps,
int minPts) |
List<List<DataPoint>> |
DBSCAN.cluster(DataSet dataSet,
double eps,
int minPts,
ExecutorService threadpool) |
List<List<DataPoint>> |
ClustererBase.cluster(DataSet dataSet,
ExecutorService threadpool) |
List<List<DataPoint>> |
Clusterer.cluster(DataSet dataSet,
ExecutorService threadpool)
Performs clustering on the given data set.
|
List<List<DataPoint>> |
KClustererBase.cluster(DataSet dataSet,
int clusters) |
List<List<DataPoint>> |
KClusterer.cluster(DataSet dataSet,
int clusters)
Performs clustering on the given data set.
|
List<List<DataPoint>> |
DBSCAN.cluster(DataSet dataSet,
int minPts) |
List<List<DataPoint>> |
KClustererBase.cluster(DataSet dataSet,
int clusters,
ExecutorService threadpool) |
List<List<DataPoint>> |
KClusterer.cluster(DataSet dataSet,
int clusters,
ExecutorService threadpool)
Performs clustering on the given data set.
|
List<List<DataPoint>> |
DBSCAN.cluster(DataSet dataSet,
int minPts,
ExecutorService threadpool) |
List<List<DataPoint>> |
KClustererBase.cluster(DataSet dataSet,
int lowK,
int highK) |
List<List<DataPoint>> |
KClusterer.cluster(DataSet dataSet,
int lowK,
int highK)
Performs clustering on the given data set.
|
List<List<DataPoint>> |
KClustererBase.cluster(DataSet dataSet,
int lowK,
int highK,
ExecutorService threadpool) |
List<List<DataPoint>> |
KClusterer.cluster(DataSet dataSet,
int lowK,
int highK,
ExecutorService threadpool)
Performs clustering on the given data set.
|
static List<List<DataPoint>> |
ClustererBase.createClusterListFromAssignmentArray(int[] assignments,
DataSet dataSet)
Convenient helper method.
|
static List<DataPoint> |
ClustererBase.getDatapointsFromCluster(int c,
int[] assignments,
DataSet dataSet,
int[] indexFrom)
Gets a list of the datapoints in a data set that belong to the indicated cluster
|
Modifier and Type | Method and Description |
---|---|
boolean |
EMGaussianMixture.setUsingDataList(List<DataPoint> dataPoint) |
boolean |
EMGaussianMixture.setUsingDataList(List<DataPoint> dataPoints,
ExecutorService threadpool) |
Modifier and Type | Method and Description |
---|---|
double |
DistanceMetricDissimilarity.distance(DataPoint a,
DataPoint b) |
double |
ClusterDissimilarity.distance(DataPoint a,
DataPoint b)
Provides the notion of distance, or dissimilarity, between two data points
|
Modifier and Type | Method and Description |
---|---|
double |
SingleLinkDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
SingleLinkDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
LanceWilliamsDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
LanceWilliamsDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
CompleteLinkDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
CompleteLinkDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
ClusterDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b)
Provides the notion of dissimilarity between two sets of points, that may
not have the same number of points.
|
double |
ClusterDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b)
Provides the notion of dissimilarity between two sets of points, that may
not have the same number of points.
|
double |
CentroidDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
CentroidDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
AverageLinkDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
double |
AverageLinkDissimilarity.dissimilarity(List<DataPoint> a,
List<DataPoint> b) |
Modifier and Type | Method and Description |
---|---|
double |
NormalizedMutualInformation.evaluate(List<List<DataPoint>> dataSets) |
double |
IntraClusterSumEvaluation.evaluate(List<List<DataPoint>> dataSets) |
double |
DunnIndex.evaluate(List<List<DataPoint>> dataSets) |
double |
DaviesBouldinIndex.evaluate(List<List<DataPoint>> dataSets) |
double |
ClusterEvaluation.evaluate(List<List<DataPoint>> dataSets)
Evaluates the clustering of the given set of clusters.
|
double |
AdjustedRandIndex.evaluate(List<List<DataPoint>> dataSets) |
Modifier and Type | Method and Description |
---|---|
double |
SumOfSqrdPairwiseDistances.evaluate(List<DataPoint> dataPoints) |
double |
SoSCentroidDistance.evaluate(List<DataPoint> dataPoints) |
double |
MeanDistance.evaluate(List<DataPoint> dataPoints) |
double |
MeanCentroidDistance.evaluate(List<DataPoint> dataPoints) |
double |
MaxDistance.evaluate(List<DataPoint> dataPoints) |
double |
IntraClusterEvaluation.evaluate(List<DataPoint> dataPoints)
Evaluates the cluster represented by the given list of data points.
|
Modifier and Type | Method and Description |
---|---|
List<List<DataPoint>> |
PriorityHAC.getClusterDesignations(int clusters)
Returns the assignment array for that would have been computed for the
previous data set with the desired number of clusters.
|
List<List<DataPoint>> |
NNChainHAC.getClusterDesignations(int clusters,
DataSet data)
Returns the assignment array for that would have been computed for the
previous data set with the desired number of clusters.
|
Modifier and Type | Method and Description |
---|---|
protected static List<List<DataPoint>> |
KMeans.getListOfLists(int k) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
ZeroMeanTransform.inverse(DataPoint dp) |
DataPoint |
LinearTransform.inverse(DataPoint dp) |
DataPoint |
InvertibleTransform.inverse(DataPoint dp)
Applies the inverse or "reverse" transform to approximately undo the
effect of
DataTransform.transform(jsat.classifiers.DataPoint) to recover an
approximation of the original data point. |
DataPoint |
FastICA.inverse(DataPoint dp) |
DataPoint |
ZeroMeanTransform.transform(DataPoint dp) |
DataPoint |
WhitenedPCA.transform(DataPoint dp) |
DataPoint |
UnitVarianceTransform.transform(DataPoint dp) |
DataPoint |
StandardizeTransform.transform(DataPoint dp) |
DataPoint |
RemoveAttributeTransform.transform(DataPoint dp) |
DataPoint |
PolynomialTransform.transform(DataPoint dp) |
DataPoint |
PNormNormalization.transform(DataPoint dp) |
DataPoint |
PCA.transform(DataPoint dp) |
DataPoint |
NumericalToHistogram.transform(DataPoint dp) |
DataPoint |
NominalToNumeric.transform(DataPoint dp) |
DataPoint |
LinearTransform.transform(DataPoint dp) |
DataPoint |
JLTransform.transform(DataPoint dp) |
DataPoint |
InverseOfTransform.transform(DataPoint dp) |
DataPoint |
InsertMissingValuesTransform.transform(DataPoint dp) |
DataPoint |
Imputer.transform(DataPoint dp) |
DataPoint |
FastICA.transform(DataPoint dp) |
DataPoint |
DenseSparceTransform.transform(DataPoint dp) |
DataPoint |
DataTransformProcess.transform(DataPoint dp) |
DataPoint |
DataTransform.transform(DataPoint dp)
Returns a new data point that is a transformation of the original data
point.
|
DataPoint |
AutoDeskewTransform.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
DataModelPipeline.classify(DataPoint data) |
DataPoint |
ZeroMeanTransform.inverse(DataPoint dp) |
DataPoint |
LinearTransform.inverse(DataPoint dp) |
DataPoint |
InvertibleTransform.inverse(DataPoint dp)
Applies the inverse or "reverse" transform to approximately undo the
effect of
DataTransform.transform(jsat.classifiers.DataPoint) to recover an
approximation of the original data point. |
DataPoint |
FastICA.inverse(DataPoint dp) |
void |
ZeroMeanTransform.mutableInverse(DataPoint dp) |
void |
LinearTransform.mutableInverse(DataPoint dp) |
void |
InPlaceInvertibleTransform.mutableInverse(DataPoint dp)
Mutates the given data point.
|
void |
ZeroMeanTransform.mutableTransform(DataPoint dp) |
void |
WhitenedZCA.mutableTransform(DataPoint dp) |
void |
UnitVarianceTransform.mutableTransform(DataPoint dp) |
void |
StandardizeTransform.mutableTransform(DataPoint dp) |
void |
PNormNormalization.mutableTransform(DataPoint dp) |
void |
LinearTransform.mutableTransform(DataPoint dp) |
void |
InsertMissingValuesTransform.mutableTransform(DataPoint dp) |
void |
InPlaceTransform.mutableTransform(DataPoint dp)
Mutates the given data point.
|
void |
Imputer.mutableTransform(DataPoint dp) |
void |
AutoDeskewTransform.mutableTransform(DataPoint dp) |
double |
DataModelPipeline.regress(DataPoint data) |
DataPoint |
ZeroMeanTransform.transform(DataPoint dp) |
DataPoint |
WhitenedPCA.transform(DataPoint dp) |
DataPoint |
UnitVarianceTransform.transform(DataPoint dp) |
DataPoint |
StandardizeTransform.transform(DataPoint dp) |
DataPoint |
RemoveAttributeTransform.transform(DataPoint dp) |
DataPoint |
PolynomialTransform.transform(DataPoint dp) |
DataPoint |
PNormNormalization.transform(DataPoint dp) |
DataPoint |
PCA.transform(DataPoint dp) |
DataPoint |
NumericalToHistogram.transform(DataPoint dp) |
DataPoint |
NominalToNumeric.transform(DataPoint dp) |
DataPoint |
LinearTransform.transform(DataPoint dp) |
DataPoint |
JLTransform.transform(DataPoint dp) |
DataPoint |
InverseOfTransform.transform(DataPoint dp) |
DataPoint |
InsertMissingValuesTransform.transform(DataPoint dp) |
DataPoint |
Imputer.transform(DataPoint dp) |
DataPoint |
FastICA.transform(DataPoint dp) |
DataPoint |
DenseSparceTransform.transform(DataPoint dp) |
DataPoint |
DataTransformProcess.transform(DataPoint dp) |
DataPoint |
DataTransform.transform(DataPoint dp)
Returns a new data point that is a transformation of the original data
point.
|
DataPoint |
AutoDeskewTransform.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
SFS.transform(DataPoint dp) |
DataPoint |
LRS.transform(DataPoint dp) |
DataPoint |
BDS.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
SFS.transform(DataPoint dp) |
DataPoint |
LRS.transform(DataPoint dp) |
DataPoint |
BDS.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
RFF_RBF.transform(DataPoint dp) |
DataPoint |
Nystrom.transform(DataPoint dp) |
DataPoint |
KernelPCA.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
RFF_RBF.transform(DataPoint dp) |
DataPoint |
Nystrom.transform(DataPoint dp) |
DataPoint |
KernelPCA.transform(DataPoint dp) |
Modifier and Type | Method and Description |
---|---|
boolean |
SymmetricDirichlet.setUsingDataList(List<DataPoint> dataPoint) |
boolean |
ProductKDE.setUsingDataList(List<DataPoint> dataPoints) |
boolean |
NormalM.setUsingDataList(List<DataPoint> dataSet) |
boolean |
MultivariateDistribution.setUsingDataList(List<DataPoint> dataPoints)
Sets the parameters of the distribution to attempt to fit the given list of data points.
|
boolean |
MetricKDE.setUsingDataList(List<DataPoint> dataPoints) |
boolean |
Dirichlet.setUsingDataList(List<DataPoint> dataPoint) |
boolean |
MultivariateDistributionSkeleton.setUsingDataList(List<DataPoint> dataPoints,
ExecutorService threadpool) |
boolean |
MultivariateDistribution.setUsingDataList(List<DataPoint> dataPoints,
ExecutorService threadpool)
Sets the parameters of the distribution to attempt to fit the given list of data points.
|
boolean |
MetricKDE.setUsingDataList(List<DataPoint> dataPoints,
ExecutorService threadpool) |
Modifier and Type | Method and Description |
---|---|
static void |
MatrixStatistics.covarianceMatrix(Vec mean,
List<DataPoint> dataSet,
Matrix covariance)
Computes the weighted result for the covariance matrix of the given data set.
|
static void |
MatrixStatistics.covarianceMatrix(Vec mean,
List<DataPoint> dataSet,
Matrix covariance,
double sumOfWeights,
double sumOfSquaredWeights)
Computes the weighted result for the covariance matrix of the given data set.
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
ModelSearch.classify(DataPoint data) |
double |
ModelSearch.regress(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
DataPoint |
RegressionDataSet.getDataPoint(int i) |
Modifier and Type | Method and Description |
---|---|
void |
RegressionDataSet.addDataPoint(DataPoint dp,
double val) |
CategoricalResults |
LogisticRegression.classify(DataPoint data) |
double |
StochasticRidgeRegression.regress(DataPoint data) |
double |
StochasticGradientBoosting.regress(DataPoint data) |
double |
RidgeRegression.regress(DataPoint data) |
double |
Regressor.regress(DataPoint data) |
double |
RANSAC.regress(DataPoint data) |
double |
OrdinaryKriging.regress(DataPoint data) |
double |
NadarayaWatson.regress(DataPoint data) |
double |
MultipleLinearRegression.regress(DataPoint data) |
double |
LogisticRegression.regress(DataPoint data) |
double |
KernelRLS.regress(DataPoint data) |
double |
KernelRidgeRegression.regress(DataPoint data) |
double |
AveragedRegressor.regress(DataPoint data) |
void |
RegressionDataSet.setDataPoint(int i,
DataPoint dp) |
void |
UpdateableRegressor.update(DataPoint dataPoint,
double targetValue)
Updates the classifier by giving it a new data point to learn from.
|
void |
KernelRLS.update(DataPoint dataPoint,
double y_t) |
Constructor and Description |
---|
RegressionDataSet(List<DataPoint> data,
int predicting)
Creates a new data set for the given list of data points.
|
Copyright © 2017. All rights reserved.