Modifier and Type | Method and Description |
---|---|
RegressionDataSet |
SimpleDataSet.asRegressionDataSet(int index)
Converts this dataset into one meant for regression problems.
|
Modifier and Type | Method and Description |
---|---|
static RegressionDataSet |
Bagging.getSampledDataSet(RegressionDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
static RegressionDataSet |
Bagging.getWeightSampledDataSet(RegressionDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
Modifier and Type | Method and Description |
---|---|
static RegressionDataSet |
Bagging.getSampledDataSet(RegressionDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
static RegressionDataSet |
Bagging.getWeightSampledDataSet(RegressionDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
void |
Wagging.train(RegressionDataSet dataSet) |
void |
UpdatableStacking.train(RegressionDataSet dataSet) |
void |
Stacking.train(RegressionDataSet dataSet) |
void |
Bagging.train(RegressionDataSet dataSet) |
void |
Wagging.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
UpdatableStacking.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
Stacking.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
Bagging.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
NearestNeighbour.train(RegressionDataSet dataSet) |
void |
LWL.train(RegressionDataSet dataSet) |
void |
NearestNeighbour.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
LWL.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
STGD.train(RegressionDataSet dataSet) |
void |
SMIDAS.train(RegressionDataSet dataSet) |
void |
SCD.train(RegressionDataSet dataSet) |
void |
PassiveAggressive.train(RegressionDataSet dataSet) |
void |
LinearSGD.train(RegressionDataSet dataSet) |
void |
LinearL1SCD.train(RegressionDataSet dataSet) |
void |
LinearBatch.train(RegressionDataSet dataSet) |
void |
STGD.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
SMIDAS.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
SCD.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
PassiveAggressive.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
LinearSGD.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
LinearL1SCD.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
LinearBatch.train(RegressionDataSet D,
ExecutorService threadPool) |
void |
LinearBatch.train(RegressionDataSet dataSet,
Regressor warmSolution) |
void |
LinearBatch.train(RegressionDataSet D,
Regressor warmSolution,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
KernelSGD.train(RegressionDataSet dataSet) |
void |
KernelSGD.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
RBFNet.train(RegressionDataSet dataSet) |
void |
BackPropagationNet.train(RegressionDataSet dataSet) |
void |
RBFNet.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
BackPropagationNet.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
PlattSMO.train(RegressionDataSet dataSet) |
void |
LSSVM.train(RegressionDataSet dataSet) |
void |
DCDs.train(RegressionDataSet dataSet) |
void |
DCD.train(RegressionDataSet dataSet) |
void |
PlattSMO.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
LSSVM.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
DCDs.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
DCD.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
PlattSMO.train(RegressionDataSet dataSet,
Regressor warmSolution) |
void |
LSSVM.train(RegressionDataSet dataSet,
Regressor warmSolution) |
void |
DCDs.train(RegressionDataSet dataSet,
Regressor warmSolution) |
void |
PlattSMO.train(RegressionDataSet dataSet,
Regressor warmSolution,
ExecutorService threadPool) |
void |
LSSVM.train(RegressionDataSet dataSet,
Regressor warmSolution,
ExecutorService threadPool) |
void |
DCDs.train(RegressionDataSet dataSet,
Regressor warmSolution,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
RandomForest.train(RegressionDataSet dataSet) |
void |
ExtraTree.train(RegressionDataSet dataSet) |
void |
ERTrees.train(RegressionDataSet dataSet) |
void |
DecisionTree.train(RegressionDataSet dataSet) |
void |
DecisionStump.train(RegressionDataSet dataSet) |
void |
RandomForest.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
ExtraTree.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
ERTrees.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
DecisionTree.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
DecisionStump.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
DecisionTree.train(RegressionDataSet dataSet,
Set<Integer> options) |
void |
DecisionTree.train(RegressionDataSet dataSet,
Set<Integer> options,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
DataModelPipeline.train(RegressionDataSet dataSet) |
void |
DataModelPipeline.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
Constructor and Description |
---|
BDS(int featureCount,
RegressionDataSet dataSet,
Regressor evaluator,
int folds)
Performs BDS feature selection for a regression problem
|
LRS(int L,
int R,
RegressionDataSet rds,
Regressor evaluater,
int folds)
Performs LRS feature selection for a regression problem
|
SBS(int minFeatures,
int maxFeatures,
RegressionDataSet rds,
Regressor evaluater,
int folds,
double maxDecrease)
Performs SBS feature selection for a regression problem
|
SFS(int minFeatures,
int maxFeatures,
RegressionDataSet dataSet,
Regressor regressor,
int folds,
double maxIncrease)
Performs SFS feature selection for a regression problem
|
Modifier and Type | Method and Description |
---|---|
static RegressionDataSet |
LIBSVMLoader.loadR(File file)
Loads a new regression data set from a LIBSVM file, assuming the label is
a numeric target value to predict
|
static RegressionDataSet |
LIBSVMLoader.loadR(File file,
double sparseRatio)
Loads a new regression data set from a LIBSVM file, assuming the label is
a numeric target value to predict
|
static RegressionDataSet |
LIBSVMLoader.loadR(File file,
double sparseRatio,
int vectorLength)
Loads a new regression data set from a LIBSVM file, assuming the label is
a numeric target value to predict
|
static RegressionDataSet |
LIBSVMLoader.loadR(InputStreamReader isr,
double sparseRatio)
Loads a new regression data set from a LIBSVM file, assuming the label is
a numeric target value to predict
|
static RegressionDataSet |
LIBSVMLoader.loadR(Reader reader,
double sparseRatio,
int vectorLength)
Loads a new regression data set from a LIBSVM file, assuming the label is
a numeric target value to predict.
|
static RegressionDataSet |
JSATData.loadRegression(InputStream inRaw)
Loads in a JSAT dataset as a
RegressionDataSet . |
static RegressionDataSet |
CSV.readR(int numeric_target_column,
Path path,
char delimiter,
int lines_to_skip,
char comment,
Set<Integer> cat_cols)
Reads in a CSV dataset as a regression dataset.
|
static RegressionDataSet |
CSV.readR(int numeric_target_column,
Path path,
int lines_to_skip,
Set<Integer> cat_cols)
Reads in a CSV dataset as a regression dataset.
|
static RegressionDataSet |
CSV.readR(int numeric_target_column,
Reader reader,
char delimiter,
int lines_to_skip,
char comment,
Set<Integer> cat_cols)
Reads in a CSV dataset as a regression dataset.
|
static RegressionDataSet |
CSV.readR(int numeric_target_column,
Reader reader,
int lines_to_skip,
Set<Integer> cat_cols)
Reads in a CSV dataset as a regression dataset.
|
Modifier and Type | Method and Description |
---|---|
static void |
LIBSVMLoader.write(RegressionDataSet data,
OutputStream os)
Writes out the given regression data set as a LIBSVM data file
|
Modifier and Type | Method and Description |
---|---|
abstract void |
TrainableDistanceMetric.train(RegressionDataSet dataSet)
Trains this metric on the given regression problem data set
|
void |
NormalizedEuclideanDistance.train(RegressionDataSet dataSet) |
void |
MahalanobisDistance.train(RegressionDataSet dataSet) |
abstract void |
TrainableDistanceMetric.train(RegressionDataSet dataSet,
ExecutorService threadpool)
Trains this metric on the given regression problem data set
|
void |
NormalizedEuclideanDistance.train(RegressionDataSet dataSet,
ExecutorService threadpool) |
void |
MahalanobisDistance.train(RegressionDataSet dataSet,
ExecutorService threadpool) |
Modifier and Type | Method and Description |
---|---|
void |
RandomSearch.train(RegressionDataSet dataSet) |
void |
GridSearch.train(RegressionDataSet dataSet) |
void |
RandomSearch.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
GridSearch.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
static RegressionDataSet |
RegressionDataSet.comineAllBut(List<RegressionDataSet> list,
int exception) |
protected RegressionDataSet |
RegressionDataSet.getSubset(List<Integer> indicies) |
RegressionDataSet |
RegressionDataSet.getTwiceShallowClone() |
RegressionDataSet |
RegressionDataSet.shallowClone() |
static RegressionDataSet |
RegressionDataSet.usingDPPList(List<DataPointPair<Double>> list)
Creates a new data set that uses the given list as its backing list.
|
Modifier and Type | Method and Description |
---|---|
void |
RegressionModelEvaluation.evaluateTestSet(RegressionDataSet testSet)
Performs an evaluation of the regressor using the initial data set to
train, and testing on the given data set.
|
void |
StochasticRidgeRegression.train(RegressionDataSet dataSet) |
void |
StochasticGradientBoosting.train(RegressionDataSet dataSet) |
void |
RidgeRegression.train(RegressionDataSet dataSet) |
void |
Regressor.train(RegressionDataSet dataSet) |
void |
RANSAC.train(RegressionDataSet dataSet) |
void |
OrdinaryKriging.train(RegressionDataSet dataSet) |
void |
NadarayaWatson.train(RegressionDataSet dataSet) |
void |
MultipleLinearRegression.train(RegressionDataSet dataSet) |
void |
LogisticRegression.train(RegressionDataSet dataSet) |
void |
KernelRLS.train(RegressionDataSet dataSet) |
void |
KernelRidgeRegression.train(RegressionDataSet dataSet) |
void |
BaseUpdateableRegressor.train(RegressionDataSet dataSet) |
void |
AveragedRegressor.train(RegressionDataSet dataSet) |
void |
OrdinaryKriging.Variogram.train(RegressionDataSet dataSet,
double nugget)
Sets the values of the variogram
|
void |
OrdinaryKriging.PowVariogram.train(RegressionDataSet dataSet,
double nugget) |
void |
StochasticRidgeRegression.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
StochasticGradientBoosting.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
RidgeRegression.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
Regressor.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
RANSAC.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
OrdinaryKriging.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
NadarayaWatson.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
MultipleLinearRegression.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
LogisticRegression.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
KernelRLS.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
KernelRidgeRegression.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
BaseUpdateableRegressor.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
AveragedRegressor.train(RegressionDataSet dataSet,
ExecutorService threadPool) |
void |
WarmRegressor.train(RegressionDataSet dataSet,
Regressor warmSolution)
Trains the regressor and constructs a model for regression using the
given data set.
|
void |
WarmRegressor.train(RegressionDataSet dataSet,
Regressor warmSolution,
ExecutorService threadPool)
Trains the regressor and constructs a model for regression using the
given data set.
|
static void |
BaseUpdateableRegressor.trainEpochs(RegressionDataSet dataSet,
UpdateableRegressor toTrain,
int epochs)
Performs training on an updateable classifier by going over the whole
data set in random order one observation at a time, multiple times.
|
Modifier and Type | Method and Description |
---|---|
static RegressionDataSet |
RegressionDataSet.comineAllBut(List<RegressionDataSet> list,
int exception) |
void |
RegressionModelEvaluation.evaluateCrossValidation(List<RegressionDataSet> lcds)
Performs an evaluation of the regressor using the training data set,
where the folds of the training data set are provided by the user.
|
void |
RegressionModelEvaluation.evaluateCrossValidation(List<RegressionDataSet> lcds,
List<RegressionDataSet> trainCombinations)
Note: Most people should never need to call this method.
|
void |
RegressionModelEvaluation.evaluateCrossValidation(List<RegressionDataSet> lcds,
List<RegressionDataSet> trainCombinations)
Note: Most people should never need to call this method.
|
Constructor and Description |
---|
RegressionModelEvaluation(Regressor regressor,
RegressionDataSet dataSet)
Creates a new RegressionModelEvaluation that will perform serial training
|
RegressionModelEvaluation(Regressor regressor,
RegressionDataSet dataSet,
ExecutorService threadpool)
Creates a new RegressionModelEvaluation that will perform parallel training.
|
Copyright © 2017. All rights reserved.