Modifier and Type | Method and Description |
---|---|
CategoricalResults |
Rocchio.classify(DataPoint data) |
CategoricalResults |
RegressorToClassifier.classify(DataPoint data) |
CategoricalResults |
PriorClassifier.classify(DataPoint data) |
CategoricalResults |
OneVSOne.classify(DataPoint data) |
CategoricalResults |
OneVSAll.classify(DataPoint data) |
CategoricalResults |
MultinomialLogisticRegression.classify(DataPoint data) |
CategoricalResults |
MajorityVote.classify(DataPoint data) |
CategoricalResults |
DDAG.classify(DataPoint data) |
CategoricalResults |
Classifier.classify(DataPoint data)
Performs classification on the given data point.
|
CategoricalResults |
CategoricalResults.clone()
Creates a deep clone of this
|
CategoricalResults[] |
ClassificationModelEvaluation.getPredictions()
If
ClassificationModelEvaluation.keepPredictions(boolean) was set, this method will return
the array storing the predictions made by the classifier during
evaluation. |
Constructor and Description |
---|
PriorClassifier(CategoricalResults cr)
Creates a new Prior Classifier that is given the results it should be
returning
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
ODE.classify(DataPoint data) |
CategoricalResults |
NaiveBayesUpdateable.classify(DataPoint data) |
CategoricalResults |
NaiveBayes.classify(DataPoint data) |
CategoricalResults |
MultinomialNaiveBayes.classify(DataPoint data) |
CategoricalResults |
ConditionalProbabilityTable.classify(DataPoint data) |
CategoricalResults |
BestClassDistribution.classify(DataPoint data) |
CategoricalResults |
AODE.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
DiscreteBayesNetwork.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
Wagging.classify(DataPoint data) |
CategoricalResults |
UpdatableStacking.classify(DataPoint data) |
CategoricalResults |
Stacking.classify(DataPoint data) |
CategoricalResults |
SAMME.classify(DataPoint data) |
CategoricalResults |
ModestAdaBoost.classify(DataPoint data) |
CategoricalResults |
LogitBoost.classify(DataPoint data) |
CategoricalResults |
EmphasisBoost.classify(DataPoint data) |
CategoricalResults |
Bagging.classify(DataPoint data) |
CategoricalResults |
ArcX4.classify(DataPoint data) |
CategoricalResults |
AdaBoostM1.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
PlattCalibration.classify(DataPoint data) |
CategoricalResults |
IsotonicCalibration.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
void |
SimpleBinaryClassMetric.addResult(CategoricalResults prediction,
int trueLabel,
double weight) |
void |
LogLoss.addResult(CategoricalResults prediction,
int trueLabel,
double weight) |
void |
Kappa.addResult(CategoricalResults prediction,
int trueLabel,
double weight) |
void |
ClassificationScore.addResult(CategoricalResults prediction,
int trueLabel,
double weight)
Adds the given result to the score
|
void |
AUC.addResult(CategoricalResults prediction,
int trueLabel,
double weight) |
void |
Accuracy.addResult(CategoricalResults prediction,
int trueLabel,
double weight) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
NearestNeighbour.classify(DataPoint data) |
CategoricalResults |
LWL.classify(DataPoint data) |
CategoricalResults |
DANN.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
Projectron.classify(DataPoint data) |
CategoricalResults |
OSKL.classify(DataPoint data) |
CategoricalResults |
KernelSGD.classify(DataPoint data) |
CategoricalResults |
Forgetron.classify(DataPoint data) |
CategoricalResults |
DUOL.classify(DataPoint data) |
CategoricalResults |
CSKLRBatch.classify(DataPoint data) |
CategoricalResults |
CSKLR.classify(DataPoint data) |
CategoricalResults |
BOGD.classify(DataPoint data) |
CategoricalResults |
ALMA2K.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
SOM.classify(DataPoint data) |
CategoricalResults |
RBFNet.classify(DataPoint data) |
CategoricalResults |
Perceptron.classify(DataPoint data) |
CategoricalResults |
LVQLLC.classify(DataPoint data) |
CategoricalResults |
LVQ.classify(DataPoint data) |
CategoricalResults |
DReDNetSimple.classify(DataPoint data) |
CategoricalResults |
BackPropagationNet.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
SVMnoBias.classify(DataPoint data) |
CategoricalResults |
SBP.classify(DataPoint data) |
CategoricalResults |
PlattSMO.classify(DataPoint data) |
CategoricalResults |
PegasosK.classify(DataPoint data) |
CategoricalResults |
Pegasos.classify(DataPoint data) |
CategoricalResults |
LSSVM.classify(DataPoint data) |
CategoricalResults |
DCSVM.classify(DataPoint data) |
CategoricalResults |
DCDs.classify(DataPoint data) |
CategoricalResults |
DCD.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
OnlineAMM.classify(DataPoint data) |
CategoricalResults |
CPM.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
TreeNodeVisitor.classify(DataPoint dp) |
CategoricalResults |
RandomForest.classify(DataPoint data) |
CategoricalResults |
ID3.classify(DataPoint data) |
CategoricalResults |
ExtraTree.classify(DataPoint data) |
CategoricalResults |
ERTrees.classify(DataPoint data) |
CategoricalResults |
DecisionTree.classify(DataPoint data) |
CategoricalResults |
DecisionStump.classify(DataPoint data) |
CategoricalResults |
ImpurityScore.getResults()
Obtains the current categorical results by prior probability
|
CategoricalResults |
TreeNodeVisitor.localClassify(DataPoint dp)
Returns the classification result that would have been obtained if the
current node was a leaf node.
|
CategoricalResults |
DecisionTree.Node.localClassify(DataPoint dp) |
CategoricalResults |
DecisionStump.result(int i)
Returns the categorical result of the i'th path.
|
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
DataModelPipeline.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
static CategoricalResults |
LogisticLoss.classify(double score) |
static CategoricalResults |
HingeLoss.classify(double score) |
CategoricalResults |
LossC.getClassification(double score)
Given the score value of a data point, this returns the classification
results.
|
CategoricalResults |
LogisticLoss.getClassification(double score) |
CategoricalResults |
HingeLoss.getClassification(double score) |
CategoricalResults |
SoftmaxLoss.getClassification(Vec processed) |
CategoricalResults |
LossMC.getClassification(Vec processed)
Given the
processed
predictions, returns the classification results for said predictions. |
CategoricalResults |
HingeLoss.getClassification(Vec processed) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
ModelSearch.classify(DataPoint data) |
Modifier and Type | Method and Description |
---|---|
CategoricalResults |
LogisticRegression.classify(DataPoint data) |
Copyright © 2017. All rights reserved.