Modifier and Type | Field and Description |
---|---|
protected CategoricalData[] |
DataSet.categories
Contains the categories for each of the categorical variables
|
Modifier and Type | Method and Description |
---|---|
CategoricalData[] |
DataSet.getCategories()
Returns the array containing the categorical data information for this data
set.
|
Constructor and Description |
---|
SimpleDataSet(CategoricalData[] categories,
int numNumericalValues) |
Modifier and Type | Field and Description |
---|---|
protected CategoricalData[] |
DataPoint.categoricalData |
protected CategoricalData |
OneVSOne.predicting |
protected CategoricalData |
ClassificationDataSet.predicting
The categories for the predicted value
|
Modifier and Type | Method and Description |
---|---|
CategoricalData |
CategoricalData.clone() |
static CategoricalData[] |
CategoricalData.copyOf(CategoricalData[] orig) |
CategoricalData[] |
DataPoint.getCategoricalData()
Returns the array of Categorical Data information
|
CategoricalData |
ClassificationDataSet.getPredicting() |
Modifier and Type | Method and Description |
---|---|
static CategoricalData[] |
CategoricalData.copyOf(CategoricalData[] orig) |
void |
UpdateableClassifier.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting)
Prepares the classifier to begin learning from its
UpdateableClassifier.update(jsat.classifiers.DataPoint, int) method. |
void |
UpdateableClassifier.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting)
Prepares the classifier to begin learning from its
UpdateableClassifier.update(jsat.classifiers.DataPoint, int) method. |
Constructor and Description |
---|
ClassificationDataSet(int numerical,
CategoricalData[] categories,
CategoricalData predicting)
Creates a new, empty, data set for classification problems.
|
ClassificationDataSet(int numerical,
CategoricalData[] categories,
CategoricalData predicting)
Creates a new, empty, data set for classification problems.
|
ClassificationDataSet(List<DataPointPair<Integer>> data,
CategoricalData predicting)
Creates a new data set for classification problems from the given list of data points.
|
DataPoint(Vec numericalValues,
int[] categoricalValues,
CategoricalData[] categoricalData)
Creates a new data point with the default weight of 1.0
|
DataPoint(Vec numericalValues,
int[] categoricalValues,
CategoricalData[] categoricalData,
double weight)
Creates a new data point
|
Modifier and Type | Field and Description |
---|---|
protected CategoricalData |
AODE.predicting |
Modifier and Type | Method and Description |
---|---|
void |
ODE.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ODE.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
NaiveBayesUpdateable.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
NaiveBayesUpdateable.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
MultinomialNaiveBayes.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
MultinomialNaiveBayes.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
AODE.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
AODE.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
Modifier and Type | Field and Description |
---|---|
protected CategoricalData |
DiscreteBayesNetwork.predicting
The class we are predicting
|
Modifier and Type | Field and Description |
---|---|
protected CategoricalData |
ModestAdaBoost.predicting |
protected CategoricalData |
EmphasisBoost.predicting |
protected CategoricalData |
AdaBoostM1.predicting |
Modifier and Type | Method and Description |
---|---|
void |
UpdatableStacking.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes) |
void |
UpdatableStacking.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
UpdatableStacking.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
Modifier and Type | Method and Description |
---|---|
void |
SimpleBinaryClassMetric.prepare(CategoricalData toPredict) |
void |
LogLoss.prepare(CategoricalData toPredict) |
void |
Kappa.prepare(CategoricalData toPredict) |
void |
ClassificationScore.prepare(CategoricalData toPredict)
Prepares this score to predict on the given input
|
void |
AUC.prepare(CategoricalData toPredict) |
void |
Accuracy.prepare(CategoricalData toPredict) |
Modifier and Type | Method and Description |
---|---|
void |
STGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes) |
void |
PassiveAggressive.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes) |
void |
LinearSGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes) |
void |
STGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
STGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
SPA.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
SPA.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
SCW.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
SCW.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ROMMA.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ROMMA.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
PassiveAggressive.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
PassiveAggressive.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
NHERD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
NHERD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
LinearSGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
LinearSGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
AROW.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
AROW.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ALMA2.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ALMA2.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
Modifier and Type | Method and Description |
---|---|
void |
KernelSGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes) |
void |
Projectron.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
Projectron.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
OSKL.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
OSKL.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
KernelSGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
KernelSGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
Forgetron.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
Forgetron.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
DUOL.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
DUOL.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
CSKLR.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
CSKLR.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
BOGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
BOGD.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ALMA2K.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
ALMA2K.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
Modifier and Type | Method and Description |
---|---|
void |
OnlineAMM.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
void |
OnlineAMM.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes,
CategoricalData predicting) |
Modifier and Type | Method and Description |
---|---|
void |
DecisionStump.setPredicting(CategoricalData predicting)
Sets the DecisionStump's predicting information.
|
Modifier and Type | Method and Description |
---|---|
void |
UpdateableRegressor.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes)
Prepares the classifier to begin learning from its
UpdateableRegressor.update(jsat.classifiers.DataPoint, double) method. |
void |
KernelRLS.setUp(CategoricalData[] categoricalAttributes,
int numericAttributes) |
Constructor and Description |
---|
RegressionDataSet(int numerical,
CategoricalData[] categories)
Creates a new empty data set for regression
|
Modifier and Type | Field and Description |
---|---|
protected CategoricalData |
ClassificationTextDataLoader.labelInfo
The information about the class label that would be predicted for a
classification data set.
|
protected CategoricalData |
ClassificationHashedTextDataLoader.labelInfo
The information about the class label that would be predicted for a
classification data set.
|
Copyright © 2017. All rights reserved.