Modifier and Type | Method and Description |
---|---|
ClassificationDataSet |
SimpleDataSet.asClassificationDataSet(int index)
Converts this dataset into one meant for classification problems.
|
Modifier and Type | Method and Description |
---|---|
static ClassificationDataSet |
ClassificationDataSet.comineAllBut(List<ClassificationDataSet> list,
int exception)
A helper method meant to be used with
DataSet.cvSet(int) , this combines all
classification data sets in a given list, but holding out the indicated list. |
protected ClassificationDataSet |
ClassificationDataSet.getSubset(List<Integer> indicies) |
ClassificationDataSet |
ClassificationDataSet.getTwiceShallowClone() |
ClassificationDataSet |
ClassificationDataSet.shallowClone() |
Modifier and Type | Method and Description |
---|---|
List<ClassificationDataSet> |
ClassificationDataSet.stratSet(int folds,
Random rnd) |
Modifier and Type | Method and Description |
---|---|
void |
ClassificationModelEvaluation.evaluateTestSet(ClassificationDataSet testSet)
Performs an evaluation of the classifier using the initial data set to train, and testing on the given data set.
|
void |
Rocchio.trainC(ClassificationDataSet dataSet) |
void |
RegressorToClassifier.trainC(ClassificationDataSet dataSet) |
void |
PriorClassifier.trainC(ClassificationDataSet dataSet) |
void |
OneVSOne.trainC(ClassificationDataSet dataSet) |
void |
OneVSAll.trainC(ClassificationDataSet dataSet) |
void |
MultinomialLogisticRegression.trainC(ClassificationDataSet dataSet) |
void |
MajorityVote.trainC(ClassificationDataSet dataSet) |
void |
Classifier.trainC(ClassificationDataSet dataSet)
Trains the classifier and constructs a model for classification using the
given data set.
|
void |
BaseUpdateableClassifier.trainC(ClassificationDataSet dataSet) |
void |
WarmClassifier.trainC(ClassificationDataSet dataSet,
Classifier warmSolution)
Trains the classifier and constructs a model for classification using the
given data set.
|
void |
WarmClassifier.trainC(ClassificationDataSet dataSet,
Classifier warmSolution,
ExecutorService threadPool)
Trains the classifier and constructs a model for classification using the
given data set.
|
void |
Rocchio.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
RegressorToClassifier.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
PriorClassifier.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
OneVSOne.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
OneVSAll.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
MultinomialLogisticRegression.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
MajorityVote.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
Classifier.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool)
Trains the classifier and constructs a model for classification using the
given data set.
|
void |
BaseUpdateableClassifier.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
static void |
BaseUpdateableClassifier.trainEpochs(ClassificationDataSet dataSet,
UpdateableClassifier toTrain,
int epochs)
Performs training on an updateable classifier by going over the whole
data set in random order one observation at a time, multiple times.
|
Modifier and Type | Method and Description |
---|---|
static ClassificationDataSet |
ClassificationDataSet.comineAllBut(List<ClassificationDataSet> list,
int exception)
A helper method meant to be used with
DataSet.cvSet(int) , this combines all
classification data sets in a given list, but holding out the indicated list. |
void |
ClassificationModelEvaluation.evaluateCrossValidation(List<ClassificationDataSet> lcds)
Performs an evaluation of the classifier using the training data set,
where the folds of the training data set are provided by the user.
|
void |
ClassificationModelEvaluation.evaluateCrossValidation(List<ClassificationDataSet> lcds,
List<ClassificationDataSet> trainCombinations)
Note: Most people should never need to call this method.
|
void |
ClassificationModelEvaluation.evaluateCrossValidation(List<ClassificationDataSet> lcds,
List<ClassificationDataSet> trainCombinations)
Note: Most people should never need to call this method.
|
Constructor and Description |
---|
ClassificationModelEvaluation(Classifier classifier,
ClassificationDataSet dataSet)
Constructs a new object that can perform evaluations on the model.
|
ClassificationModelEvaluation(Classifier classifier,
ClassificationDataSet dataSet,
ExecutorService threadpool)
Constructs a new object that can perform evaluations on the model.
|
Modifier and Type | Method and Description |
---|---|
void |
NaiveBayes.trainC(ClassificationDataSet dataSet) |
void |
MultinomialNaiveBayes.trainC(ClassificationDataSet dataSet) |
void |
ConditionalProbabilityTable.trainC(ClassificationDataSet dataSet) |
void |
BestClassDistribution.trainC(ClassificationDataSet dataSet) |
void |
NaiveBayes.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
MultinomialNaiveBayes.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ConditionalProbabilityTable.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
BestClassDistribution.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
AODE.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ConditionalProbabilityTable.trainC(ClassificationDataSet dataSet,
Set<Integer> categoriesToUse)
Creates a CPT using only a subset of the features specified by categoriesToUse.
|
Modifier and Type | Method and Description |
---|---|
double |
K2NetworkLearner.f(int i,
Set<Integer> pi,
ClassificationDataSet D) |
void |
K2NetworkLearner.learnNetwork(ClassificationDataSet D)
Learns the network structure from the given data set.
|
void |
K2NetworkLearner.trainC(ClassificationDataSet dataSet) |
void |
DiscreteBayesNetwork.trainC(ClassificationDataSet dataSet) |
void |
DiscreteBayesNetwork.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
static ClassificationDataSet |
Bagging.getSampledDataSet(ClassificationDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
static ClassificationDataSet |
Bagging.getWeightSampledDataSet(ClassificationDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
Modifier and Type | Method and Description |
---|---|
static ClassificationDataSet |
Bagging.getSampledDataSet(ClassificationDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
static ClassificationDataSet |
Bagging.getWeightSampledDataSet(ClassificationDataSet dataSet,
int[] sampledCounts)
Creates a new data set from the given sample counts.
|
void |
Wagging.trainC(ClassificationDataSet dataSet) |
void |
UpdatableStacking.trainC(ClassificationDataSet dataSet) |
void |
Stacking.trainC(ClassificationDataSet dataSet) |
void |
SAMME.trainC(ClassificationDataSet dataSet) |
void |
ModestAdaBoost.trainC(ClassificationDataSet dataSet) |
void |
LogitBoost.trainC(ClassificationDataSet dataSet) |
void |
EmphasisBoost.trainC(ClassificationDataSet dataSet) |
void |
Bagging.trainC(ClassificationDataSet dataSet) |
void |
ArcX4.trainC(ClassificationDataSet dataSet) |
void |
AdaBoostM1PL.trainC(ClassificationDataSet dataSet) |
void |
AdaBoostM1.trainC(ClassificationDataSet dataSet) |
void |
Wagging.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
UpdatableStacking.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
Stacking.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
SAMME.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ModestAdaBoost.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
LogitBoostPL.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
LogitBoost.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
EmphasisBoost.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
Bagging.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ArcX4.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
AdaBoostM1PL.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
AdaBoostM1.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
BinaryCalibration.trainC(ClassificationDataSet dataSet) |
void |
BinaryCalibration.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
NearestNeighbour.trainC(ClassificationDataSet dataSet) |
void |
LWL.trainC(ClassificationDataSet dataSet) |
void |
DANN.trainC(ClassificationDataSet dataSet) |
void |
NearestNeighbour.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
LWL.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
DANN.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
static double |
LinearTools.maxLambdaLogisticL1(ClassificationDataSet cds)
If the linear model performs logistic regression regularized by λ
||w||1, this method computes the smallest value of lambda that
produces a weight vector of all zeros.
Note, that the value returned depends on the data set size. |
void |
StochasticMultinomialLogisticRegression.trainC(ClassificationDataSet dataSet) |
void |
SMIDAS.trainC(ClassificationDataSet dataSet) |
void |
SCD.trainC(ClassificationDataSet dataSet) |
void |
PassiveAggressive.trainC(ClassificationDataSet dataSet) |
void |
NewGLMNET.trainC(ClassificationDataSet dataSet) |
void |
LogisticRegressionDCD.trainC(ClassificationDataSet dataSet) |
void |
LinearL1SCD.trainC(ClassificationDataSet dataSet) |
void |
LinearBatch.trainC(ClassificationDataSet dataSet) |
void |
BBR.trainC(ClassificationDataSet dataSet) |
void |
NewGLMNET.trainC(ClassificationDataSet dataSet,
Classifier warmSolution) |
void |
LinearBatch.trainC(ClassificationDataSet dataSet,
Classifier warmSolution) |
void |
NewGLMNET.trainC(ClassificationDataSet dataSet,
Classifier warmSolution,
ExecutorService threadPool) |
void |
LinearBatch.trainC(ClassificationDataSet D,
Classifier warmSolution,
ExecutorService threadPool) |
void |
StochasticMultinomialLogisticRegression.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
SMIDAS.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
SCD.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
PassiveAggressive.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
NewGLMNET.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
LogisticRegressionDCD.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
LinearL1SCD.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
LinearBatch.trainC(ClassificationDataSet D,
ExecutorService threadPool) |
void |
BBR.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Constructor and Description |
---|
LossMCFunction(ClassificationDataSet D,
LossMC loss) |
Modifier and Type | Method and Description |
---|---|
void |
KernelSGD.trainC(ClassificationDataSet dataSet) |
void |
CSKLRBatch.trainC(ClassificationDataSet dataSet) |
void |
KernelSGD.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
CSKLRBatch.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
CPM.trainC(ClassificationDataSet dataSet) |
void |
AMM.trainC(ClassificationDataSet dataSet) |
void |
CPM.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
AMM.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
static void |
TreePruner.prune(TreeNodeVisitor root,
TreePruner.PruningMethod method,
ClassificationDataSet testSet)
Performs pruning starting from the root node of a tree
|
void |
RandomForest.trainC(ClassificationDataSet dataSet) |
void |
ID3.trainC(ClassificationDataSet dataSet) |
void |
ExtraTree.trainC(ClassificationDataSet dataSet) |
void |
ERTrees.trainC(ClassificationDataSet dataSet) |
void |
DecisionTree.trainC(ClassificationDataSet dataSet) |
void |
DecisionStump.trainC(ClassificationDataSet dataSet) |
void |
RandomForest.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ID3.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ExtraTree.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
ERTrees.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
DecisionTree.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
DecisionStump.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
DecisionTree.trainC(ClassificationDataSet dataSet,
Set<Integer> options) |
protected void |
DecisionTree.trainC(ClassificationDataSet dataSet,
Set<Integer> options,
ExecutorService threadPool)
Performs exactly the same as
DecisionTree.trainC(jsat.classifiers.ClassificationDataSet, java.util.concurrent.ExecutorService) ,
but the user can specify a subset of the features to be considered. |
Modifier and Type | Method and Description |
---|---|
void |
DataModelPipeline.trainC(ClassificationDataSet dataSet) |
void |
DataModelPipeline.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Constructor and Description |
---|
BDS(int featureCount,
ClassificationDataSet dataSet,
Classifier evaluator,
int folds)
Performs BDS feature selection for a classification problem
|
LRS(int L,
int R,
ClassificationDataSet cds,
Classifier evaluater,
int folds)
Performs LRS feature selection for a classification problem
|
MutualInfoFS(ClassificationDataSet dataSet,
int featureCount)
Creates a new Mutual Information feature selection object.
|
MutualInfoFS(ClassificationDataSet dataSet,
int featureCount,
MutualInfoFS.NumericalHandeling numericHandling)
Creates a new Mutual Information feature selection object.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm,
ExecutorService threadPool)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm,
VectorCollectionFactory<Vec> vcf)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm,
VectorCollectionFactory<Vec> vcf,
ExecutorService threadPool)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
SBS(int minFeatures,
int maxFeatures,
ClassificationDataSet cds,
Classifier evaluater,
int folds,
double maxDecrease)
Performs SBS feature selection for a classification problem
|
SFS(int minFeatures,
int maxFeatures,
ClassificationDataSet dataSet,
Classifier evaluater,
int folds,
double maxIncrease)
Performs SFS feature selection for a classification problem
|
Modifier and Type | Method and Description |
---|---|
static ClassificationDataSet |
LIBSVMLoader.loadC(File file)
Loads a new classification data set from a LIBSVM file, assuming the
label is a nominal target value
|
static ClassificationDataSet |
LIBSVMLoader.loadC(File file,
double sparseRatio)
Loads a new classification data set from a LIBSVM file, assuming the
label is a nominal target value
|
static ClassificationDataSet |
LIBSVMLoader.loadC(File file,
double sparseRatio,
int vectorLength)
Loads a new classification data set from a LIBSVM file, assuming the
label is a nominal target value
|
static ClassificationDataSet |
LIBSVMLoader.loadC(InputStreamReader isr,
double sparseRatio)
Loads a new classification data set from a LIBSVM file, assuming the
label is a nominal target value
|
static ClassificationDataSet |
LIBSVMLoader.loadC(Reader reader,
double sparseRatio,
int vectorLength)
Loads a new classification data set from a LIBSVM file, assuming the
label is a nominal target value
|
static ClassificationDataSet |
JSATData.loadClassification(InputStream inRaw)
Loads in a JSAT dataset as a
ClassificationDataSet . |
static ClassificationDataSet |
CSV.readC(int classification_target,
Path path,
char delimiter,
int lines_to_skip,
char comment,
Set<Integer> cat_cols)
Reads in a CSV dataset as a classification dataset.
|
static ClassificationDataSet |
CSV.readC(int classification_target,
Path path,
int lines_to_skip,
Set<Integer> cat_cols)
Reads in a CSV dataset as a classification dataset.
|
static ClassificationDataSet |
CSV.readC(int classification_target,
Reader reader,
char delimiter,
int lines_to_skip,
char comment,
Set<Integer> cat_cols)
Reads in a CSV dataset as a classification dataset.
|
static ClassificationDataSet |
CSV.readC(int classification_target,
Reader reader,
int lines_to_skip,
Set<Integer> cat_cols)
Reads in a CSV dataset as a classification dataset.
|
Modifier and Type | Method and Description |
---|---|
static void |
LIBSVMLoader.write(ClassificationDataSet data,
OutputStream os)
Writes out the given classification data set as a LIBSVM data file
|
Modifier and Type | Method and Description |
---|---|
abstract void |
TrainableDistanceMetric.train(ClassificationDataSet dataSet)
Trains this metric on the given classification problem data set
|
void |
NormalizedEuclideanDistance.train(ClassificationDataSet dataSet) |
void |
MahalanobisDistance.train(ClassificationDataSet dataSet) |
abstract void |
TrainableDistanceMetric.train(ClassificationDataSet dataSet,
ExecutorService threadpool)
Trains this metric on the given classification problem data set
|
void |
NormalizedEuclideanDistance.train(ClassificationDataSet dataSet,
ExecutorService threadpool) |
void |
MahalanobisDistance.train(ClassificationDataSet dataSet,
ExecutorService threadpool) |
Modifier and Type | Method and Description |
---|---|
void |
RandomSearch.trainC(ClassificationDataSet dataSet) |
void |
GridSearch.trainC(ClassificationDataSet dataSet) |
void |
RandomSearch.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
void |
GridSearch.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
void |
LogisticRegression.trainC(ClassificationDataSet dataSet) |
void |
LogisticRegression.trainC(ClassificationDataSet dataSet,
ExecutorService threadPool) |
Modifier and Type | Method and Description |
---|---|
ClassificationDataSet |
ClassificationTextDataLoader.getDataSet() |
ClassificationDataSet |
ClassificationHashedTextDataLoader.getDataSet() |
Copyright © 2017. All rights reserved.