Package | Description |
---|---|
jsat.classifiers.boosting | |
jsat.classifiers.linear | |
jsat.classifiers.linear.kernelized | |
jsat.regression |
Modifier and Type | Class and Description |
---|---|
class |
UpdatableStacking
This provides an implementation of the Stacking ensemble method meant for
Updatable models.
|
Constructor and Description |
---|
UpdatableStacking(UpdateableRegressor aggregatingRegressor,
List<UpdateableRegressor> baseRegressors)
Creates a new Stacking regressor
|
UpdatableStacking(UpdateableRegressor aggregatingRegressor,
UpdateableRegressor... baseRegressors)
Creates a new Stacking regressor.
|
UpdatableStacking(UpdateableRegressor aggregatingRegressor,
UpdateableRegressor... baseRegressors)
Creates a new Stacking regressor.
|
Constructor and Description |
---|
UpdatableStacking(UpdateableRegressor aggregatingRegressor,
List<UpdateableRegressor> baseRegressors)
Creates a new Stacking regressor
|
Modifier and Type | Class and Description |
---|---|
class |
LinearSGD
LinearSGD learns either a classification or regression problem depending on
the
loss function ℓ(w,x)
used. |
class |
PassiveAggressive
An implementations of the 3 versions of the Passive Aggressive algorithm for
binary classification and regression.
|
class |
STGD
This provides an implementation of Sparse Truncated Gradient Descent for
L1 regularized linear classification and regression on sparse data
sets.
|
Modifier and Type | Class and Description |
---|---|
class |
KernelSGD
Kernel SGD is the kernelized counterpart to
LinearSGD , and learns
nonlinear functions via the kernel trick. |
Modifier and Type | Class and Description |
---|---|
class |
BaseUpdateableRegressor
A base implementation of the UpdateableRegressor.
|
class |
KernelRLS
Provides an implementation of the Kernel Recursive Least Squares algorithm.
|
Modifier and Type | Method and Description |
---|---|
UpdateableRegressor |
UpdateableRegressor.clone() |
abstract UpdateableRegressor |
BaseUpdateableRegressor.clone() |
Modifier and Type | Method and Description |
---|---|
static void |
BaseUpdateableRegressor.trainEpochs(RegressionDataSet dataSet,
UpdateableRegressor toTrain,
int epochs)
Performs training on an updateable classifier by going over the whole
data set in random order one observation at a time, multiple times.
|
Copyright © 2017. All rights reserved.