Package | Description |
---|---|
jsat.classifiers.linear | |
jsat.classifiers.linear.kernelized | |
jsat.lossfunctions |
Modifier and Type | Method and Description |
---|---|
LossFunc |
LinearSGD.getLoss()
Returns the loss function in use
|
LossFunc |
LinearBatch.getLoss()
Returns the loss function in use
|
Modifier and Type | Method and Description |
---|---|
void |
LinearSGD.setLoss(LossFunc loss)
Sets the loss function used for the model.
|
void |
LinearBatch.setLoss(LossFunc loss)
Sets the loss function used for the model.
|
Constructor and Description |
---|
GradFunction(DataSet D,
LossFunc loss) |
LinearBatch(LossFunc loss,
double lambda0)
Creates a new Linear Batch learner
|
LinearBatch(LossFunc loss,
double lambda0,
double tolerance)
Creates a new Linear Batch learner
|
LinearBatch(LossFunc loss,
double lambda0,
double tolerance,
Optimizer2 optimizer)
Creates a new Linear Batch learner
|
LinearSGD(LossFunc loss,
double eta,
DecayRate decay,
double lambda0,
double lambda1)
Creates a new LinearSGD learner.
|
LinearSGD(LossFunc loss,
double lambda0,
double lambda1)
Creates a new LinearSGD learner
|
LossFunction(DataSet D,
LossFunc loss) |
SCD(LossFunc loss,
double regularization,
int iterations)
Creates anew SCD learner
|
Modifier and Type | Method and Description |
---|---|
LossFunc |
KernelSGD.getLoss()
Returns the loss function in use
|
Modifier and Type | Method and Description |
---|---|
void |
KernelSGD.setLoss(LossFunc loss)
Sets the loss function to use.
|
Constructor and Description |
---|
KernelSGD(LossFunc loss,
KernelTrick kernel,
double lambda,
KernelPoint.BudgetStrategy budgetStrategy,
int budgetSize)
Creates a new Kernel SGD object
|
KernelSGD(LossFunc loss,
KernelTrick kernel,
double lambda,
KernelPoint.BudgetStrategy budgetStrategy,
int budgetSize,
double eta,
double errorTolerance)
Creates a new Kernel SGD object
|
Modifier and Type | Interface and Description |
---|---|
interface |
LossC
Specifies a loss function for binary classification problems.
|
interface |
LossMC
Specifies a loss function for multi-class problems.
|
interface |
LossR
Specifies a getLoss function for regression problems.
|
Modifier and Type | Class and Description |
---|---|
class |
AbsoluteLoss
The AbsoluteLoss loss function for regression L(x, y) = |x-y|.
|
class |
EpsilonInsensitiveLoss
The ε-insensitive loss for regression L(x, y) =
max(0, |x-y|-ε) is the common loss function used for Support
Vector Regression.
|
class |
HingeLoss
The HingeLoss loss function for classification L(x, y) = max(0, 1-y*x)
.
|
class |
HuberLoss
The HuberLoss loss function for regression.
|
class |
LogisticLoss
The LogisticLoss loss function for classification L(x, y) =
log(1+exp(-y*x)).
|
class |
SoftmaxLoss
The Softmax loss function is a multi-class generalization of the
Logistic loss . |
class |
SquaredLoss
The SquaredLoss loss function for regression L(x, y) = (x-y)2.
|
Modifier and Type | Method and Description |
---|---|
LossFunc |
LossFunc.clone() |
Copyright © 2017. All rights reserved.