Constructor and Description |
---|
Rocchio(DistanceMetric dm) |
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
NearestNeighbour.getDistanceMetric() |
DistanceMetric |
LWL.getDistanceMetric()
Returns the distance metric in use
|
Modifier and Type | Method and Description |
---|---|
void |
NearestNeighbour.setDistanceMetric(DistanceMetric distanceMetric) |
void |
LWL.setDistanceMetric(DistanceMetric dm)
Sets the distance metric that will be used for the nearest neighbor search
|
Constructor and Description |
---|
LWL(Classifier classifier,
int k,
DistanceMetric dm)
Creates a new LWL classifier
|
LWL(Classifier classifier,
int k,
DistanceMetric dm,
KernelFunction kf)
Creates a new LWL classifier
|
LWL(Classifier classifier,
int k,
DistanceMetric dm,
KernelFunction kf,
VectorCollectionFactory<VecPaired<Vec,Double>> vcf)
Creates a new LWL classifier
|
LWL(Regressor regressor,
int k,
DistanceMetric dm)
Creates a new LWL Regressor
|
LWL(Regressor regressor,
int k,
DistanceMetric dm,
KernelFunction kf)
Creates a new LWL Regressor
|
LWL(Regressor regressor,
int k,
DistanceMetric dm,
KernelFunction kf,
VectorCollectionFactory<VecPaired<Vec,Double>> vcf)
Creates a new LWL Regressor
|
NearestNeighbour(int k,
boolean weighted,
DistanceMetric distanceMetric)
Constructs a new Nearest Neighbor Classifier
|
NearestNeighbour(int k,
boolean weighted,
DistanceMetric distanceMetric,
VectorCollectionFactory<VecPaired<Vec,Double>> vcf)
Constructs a new Nearest Neighbor Classifier
|
Modifier and Type | Field and Description |
---|---|
protected DistanceMetric |
LVQ.dm
The distance metric to use
|
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
RBFNet.getDistanceMetric()
Returns the distance metric in use
|
DistanceMetric |
LVQ.getDistanceMetric()
Returns the distance metric to use
|
Modifier and Type | Method and Description |
---|---|
protected abstract double[] |
RBFNet.Phase2Learner.estimateBandwidths(double alpha,
int p,
DataSet data,
List<Vec> centroids,
List<Double> centroidDistCache,
DistanceMetric dm,
ExecutorService threadpool) |
protected abstract List<Vec> |
RBFNet.Phase1Learner.getCentroids(DataSet data,
int centroids,
DistanceMetric dm,
ExecutorService ex)
Obtains the centroids for the given data set
|
void |
RBFNet.setDistanceMetric(DistanceMetric dm)
Sets the distance metric used to determine neuron activations.
|
void |
LVQ.setDistanceMetric(DistanceMetric dm)
Sets the distance used for learning
|
Constructor and Description |
---|
LVQ(DistanceMetric dm,
int iterations)
Creates a new LVQ instance
|
LVQ(DistanceMetric dm,
int iterations,
double learningRate,
int representativesPerClass)
Creates a new LVQ instance
|
LVQ(DistanceMetric dm,
int iterations,
double learningRate,
int representativesPerClass,
LVQ.LVQVersion lvqVersion,
DecayRate learningDecay)
Creates a new LVQ instance
|
LVQLLC(DistanceMetric dm,
int iterations)
Creates a new LVQ-LLC instance that uses
MultivariateNormals as
the local classifier. |
LVQLLC(DistanceMetric dm,
int iterations,
Classifier localClasifier)
Creates a new LVQ-LLC instance
|
LVQLLC(DistanceMetric dm,
int iterations,
Classifier localClasifier,
double learningRate,
int representativesPerClass)
Creates a new LVQ-LLC instance
|
LVQLLC(DistanceMetric dm,
int iterations,
Classifier localClasifier,
double learningRate,
int representativesPerClass,
LVQ.LVQVersion lvqVersion,
DecayRate learningDecay)
Creates a new LVQ-LLC instance
|
RBFNet(int numCentroids,
RBFNet.Phase1Learner cl,
RBFNet.Phase2Learner bl,
double alpha,
int p,
DistanceMetric dm,
Classifier baseClassifier)
Creates a new RBF Network for classification tasks.
|
RBFNet(int numCentroids,
RBFNet.Phase1Learner cl,
RBFNet.Phase2Learner bl,
double alpha,
int p,
DistanceMetric dm,
Regressor baseRegressor)
Creates a new RBF Network for regression tasks.
|
SOM(DistanceMetric dm,
int somHeight,
int somWeight)
Creates a new SOM using the given parameters
|
SOM(DistanceMetric dm,
int somHeight,
int somWeight,
VectorCollectionFactory<VecPaired<Vec,Integer>> vcFactory)
Creates a new SOM using the given parameters
|
Modifier and Type | Field and Description |
---|---|
protected DistanceMetric |
PAM.dm |
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
OPTICS.getDistanceMetric()
Returns the distance metric used to compute distances in the algorithm.
|
DistanceMetric |
GapStatistic.getDistanceMetric() |
DistanceMetric |
FLAME.getDistanceMetric()
Returns the distance metric to use for the nearest neighbor search
|
DistanceMetric |
HDBSCAN.getDistanceMetrics() |
Modifier and Type | Method and Description |
---|---|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod)
Selects seeds from a data set to use for a clustering algorithm.
|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod)
Selects seeds from a data set to use for a clustering algorithm.
|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod) |
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod)
Selects seeds from a data set to use for a clustering algorithm.
|
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
void |
OPTICS.setDistanceMetric(DistanceMetric dm)
Sets the distance metric used to compute distances in the algorithm.
|
void |
LSDBC.setDistanceMetric(DistanceMetric dm)
Sets the distance metric used when performing clustering.
|
void |
GapStatistic.setDistanceMetric(DistanceMetric dm)
Sets the distance metric to use when evaluating a clustering algorithm
|
void |
FLAME.setDistanceMetric(DistanceMetric dm)
Sets the distance metric to use for the nearest neighbor search
|
void |
HDBSCAN.setDistanceMetrics(DistanceMetric dm)
Sets the distance metric to use for determining closeness between data points
|
Constructor and Description |
---|
CLARA(DistanceMetric dm) |
CLARA(DistanceMetric dm,
Random rand) |
CLARA(DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
CLARA(int sampleCount,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
CLARA(int sampleSize,
int sampleCount,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
DBSCAN(DistanceMetric dm) |
DBSCAN(DistanceMetric dm,
VectorCollectionFactory<VecPaired<Vec,Integer>> vecFactory) |
FLAME(DistanceMetric dm,
int k,
int maxIterations)
Creates a new FLAME clustering object
|
GapStatistic(KClusterer base,
boolean PCSampling,
int B,
DistanceMetric dm)
Creates a new Gap clsuterer using the base clustering algorithm given.
|
HDBSCAN(DistanceMetric dm,
int m_pts)
Creates a new HDBSCAN using the simplified form, where the only parameter
is a single value.
|
HDBSCAN(DistanceMetric dm,
int m_pts,
int m_clSize,
VectorCollectionFactory<Vec> vcf)
Creates a new HDBSCAN using the full specification of the algorithm,
where two parameters may be altered.
|
HDBSCAN(DistanceMetric dm,
int m_pts,
VectorCollectionFactory<Vec> vcf)
Creates a new HDBSCAN using the simplified form, where the only parameter
is a single value.
|
LSDBC(DistanceMetric dm)
Creates a new LSDBC clustering object using the given distance metric
|
LSDBC(DistanceMetric dm,
double alpha)
Creates a new LSDBC clustering object using the given distance metric
|
LSDBC(DistanceMetric dm,
double alpha,
int neighbors)
Creates a new LSDBC clustering object using the given distance metric
|
MeanShift(DistanceMetric dm)
|
OPTICS(DistanceMetric dm,
int minPts)
Creates a new OPTICS cluster object.
|
OPTICS(DistanceMetric dm,
int minPts,
double xi)
Creates a new OPTICS cluster object.
|
PAM(DistanceMetric dm) |
PAM(DistanceMetric dm,
Random rand) |
PAM(DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
Modifier and Type | Field and Description |
---|---|
protected DistanceMetric |
DistanceMetricDissimilarity.dm
The distance metric that will back this dissimilarity measure.
|
Constructor and Description |
---|
AverageLinkDissimilarity(DistanceMetric dm)
Creates a new AverageLinkDissimilarity
|
CentroidDissimilarity(DistanceMetric dm)
Creates a new CentroidDissimilarity
|
CompleteLinkDissimilarity(DistanceMetric dm)
Creates a new CompleteLinkDissimilarity
|
DistanceMetricDissimilarity(DistanceMetric dm) |
LanceWilliamsDissimilarity(DistanceMetric dm)
Creates a new LW dissimilarity measure using the given metric as the base distance between individual points.
|
MedianDissimilarity(DistanceMetric dm) |
SingleLinkDissimilarity(DistanceMetric dm)
Creates a new SingleLinkDissimilarity
|
Constructor and Description |
---|
DaviesBouldinIndex(DistanceMetric dm)
Creates a new DaviesBouldinIndex
|
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
SumOfSqrdPairwiseDistances.getDistanceMetric() |
Modifier and Type | Method and Description |
---|---|
void |
SumOfSqrdPairwiseDistances.setDistanceMetric(DistanceMetric dm)
Sets the distance metric to be used whenever this object is called to
evaluate a cluster
|
Constructor and Description |
---|
MaxDistance(DistanceMetric dm)
Creates a new MaxDistance
|
MeanCentroidDistance(DistanceMetric dm)
Creates a new MeanCentroidDistance.
|
MeanDistance(DistanceMetric dm)
Creates a new MeanDistance
|
SoSCentroidDistance(DistanceMetric dm)
Creates a new MeanCentroidDistance.
|
SumOfSqrdPairwiseDistances(DistanceMetric dm)
Creates a new cluster evaluator using the given distance metric
|
Constructor and Description |
---|
NNChainHAC(LanceWilliamsDissimilarity distMeasure,
DistanceMetric distance)
Creates a new NNChain using the given dissimilarity measure and distance
metric.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceMetric |
KMeans.dm |
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
MiniBatchKMeans.getDistanceMetric()
Returns the distance metric used for determining the nearest cluster center
|
DistanceMetric |
KMeans.getDistanceMetric()
Returns the distance metric in use
|
Modifier and Type | Method and Description |
---|---|
void |
MiniBatchKMeans.setDistanceMetric(DistanceMetric dm)
Sets the distance metric used for determining the nearest cluster center
|
Constructor and Description |
---|
ElkanKMeans(DistanceMetric dm)
Creates a new KMeans instance
|
ElkanKMeans(DistanceMetric dm,
Random rand)
Creates a new KMeans instance
|
ElkanKMeans(DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new KMeans instance.
|
HamerlyKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new k-Means object
|
HamerlyKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection,
Random rand)
Creates a new k-Means object
|
KMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection,
Random rand) |
MiniBatchKMeans(DistanceMetric dm,
int batchSize,
int iterations)
Creates a new Mini-Batch k-Means object that uses
k-means++ for seed selection. |
MiniBatchKMeans(DistanceMetric dm,
int batchSize,
int iterations,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new Mini-Batch k-Means object
|
NaiveKMeans(DistanceMetric dm)
Creates a new naive k-Means cluster using
k-means++ for the seed selection. |
NaiveKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new naive k-Means cluster
|
NaiveKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection,
Random rand)
Creates a new naive k-Means cluster
|
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
ReliefF.getDistanceMetric()
Returns the distance metric to use
|
Modifier and Type | Method and Description |
---|---|
void |
ReliefF.setDistanceMetric(DistanceMetric dm)
Sets the distance metric to infer the feature importance with
|
Constructor and Description |
---|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm,
ExecutorService threadPool)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm,
VectorCollectionFactory<Vec> vcf)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(ClassificationDataSet cds,
int featureCount,
int m,
int n,
DistanceMetric dm,
VectorCollectionFactory<Vec> vcf,
ExecutorService threadPool)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(int featureCount,
int m,
int n,
DistanceMetric dm)
Creates a new ReliefF object to measure the importance of the variables with
respect to a classification task.
|
ReliefF(int featureCount,
int m,
int n,
DistanceMetric dm,
VectorCollectionFactory<Vec> vcf)
Creates a new ReliefF object to measure the importance of the variables
with respect to a classification task.
|
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
MDS.getEmbeddingMetric() |
Modifier and Type | Method and Description |
---|---|
protected static void |
TSNE.computeP(DataSet d,
ExecutorService ex,
Random rand,
int knn,
int[][] nearMe,
double[][] nearMePij,
DistanceMetric dm,
double perplexity) |
void |
LargeViz.setDistanceMetricEmbedding(DistanceMetric dm)
Sets the distance metric to use for the embedded space.
|
void |
LargeViz.setDistanceMetricSource(DistanceMetric dm)
Sets the distance metric to use for the original space.
|
void |
MDS.setEmbeddingMetric(DistanceMetric embedMetric)
Sets the distance metric to use when creating the initial dissimilarity
matrix of a new dataset.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceMetric |
DistanceMetricBasedKernel.d
the distance metric to use for the Kernel
|
Modifier and Type | Method and Description |
---|---|
static Distribution |
GeneralRBFKernel.guessSigma(DataSet d,
DistanceMetric dist)
Guess the distribution to use for the kernel width term
σ in the General RBF kernel. |
Constructor and Description |
---|
DistanceMetricBasedKernel(DistanceMetric d)
Creates a new distance based kerenel
|
GeneralRBFKernel(DistanceMetric d,
double sigma)
Creates a new Generic RBF Kernel
|
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
MetricKDE.getDistanceMetric()
Returns the distance metric that is used for density estimation
|
Modifier and Type | Method and Description |
---|---|
void |
MetricKDE.setDistanceMetric(DistanceMetric distanceMetric)
Sets the distance metric that is used for density estimation
|
Constructor and Description |
---|
MetricKDE(DistanceMetric distanceMetric)
Creates a new KDE object that still needs a data set to model the distribution of
|
MetricKDE(DistanceMetric distanceMetric,
VectorCollectionFactory<VecPaired<Vec,Integer>> vcf)
Creates a new KDE object that still needs a data set to model the distribution of
|
MetricKDE(KernelFunction kf,
DistanceMetric distanceMetric) |
MetricKDE(KernelFunction kf,
DistanceMetric distanceMetric,
VectorCollectionFactory<VecPaired<Vec,Integer>> vcf)
Creates a new KDE object that still needs a data set to model the distribution of
|
MetricKDE(KernelFunction kf,
DistanceMetric distanceMetric,
VectorCollectionFactory<VecPaired<Vec,Integer>> vcf,
int defaultK,
double defaultStndDev)
Creates a new KDE object that still needs a data set to model the distribution of
|
Modifier and Type | Interface and Description |
---|---|
interface |
DenseSparseMetric
Many algorithms require computing the distances from a small set of points to
many other points.
|
Modifier and Type | Class and Description |
---|---|
class |
ChebyshevDistance
Chebyshev Distance is the L∞ norm.
|
class |
CosineDistance
The Cosine Distance is a adaption of the Cosine Similarity's range from
[-1, 1] into the range [0, 1].
|
class |
CosineDistanceNormalized
This distance metric returns the same cosine distance as
CosineDistance . |
class |
DistanceCounter
This class exists primarily as a sanity/benchmarking utility.
|
class |
EuclideanDistance
Euclidean Distance is the L2 norm.
|
class |
KernelDistance
Creates a distance metric from a given kernel trick.
|
class |
MahalanobisDistance
The Mahalanobis Distance is a metric that takes into account the variance of the data.
|
class |
ManhattanDistance
Manhattan Distance is the L1 norm.
|
class |
MinkowskiDistance
Minkowski Distance is the Lp norm.
|
class |
NormalizedEuclideanDistance
Implementation of the Normalized Euclidean Distance Metric.
|
class |
PearsonDistance
A valid distance metric formed from the Pearson Correlation between two vectors.
|
class |
SquaredEuclideanDistance
In many applications, the squared
EuclideanDistance is used because it avoids an expensive Math.sqrt(double) operation. |
class |
TrainableDistanceMetric
Some Distance Metrics require information that can be learned from the data set.
|
class |
WeightedEuclideanDistance
Implements the weighted Euclidean distance such that d(a, b) =
∑∀ i ∈ |w| wi
(xi-yi)2
When used with a weight vector of ones, it degenerates into the EuclideanDistance . |
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
DistanceMetric.clone() |
Modifier and Type | Method and Description |
---|---|
static void |
TrainableDistanceMetric.trainIfNeeded(DistanceMetric dm,
DataSet dataset)
Static helper method for training a distance metric only if it is needed.
|
static void |
TrainableDistanceMetric.trainIfNeeded(DistanceMetric dm,
DataSet dataset,
ExecutorService threadpool)
Static helper method for training a distance metric only if it is needed.
|
static <V extends Vec> |
TrainableDistanceMetric.trainIfNeeded(DistanceMetric dm,
List<V> dataset)
Static helper method for training a distance metric only if it is needed.
|
static <V extends Vec> |
TrainableDistanceMetric.trainIfNeeded(DistanceMetric dm,
List<V> dataset,
ExecutorService threadpool) |
Constructor and Description |
---|
DistanceCounter(DistanceMetric base)
Creates a new distance counter to wrap the given base metric
|
Modifier and Type | Method and Description |
---|---|
DistanceMetric |
VectorArray.getDistanceMetric() |
Modifier and Type | Method and Description |
---|---|
VectorCollection<V> |
VPTreeMV.VPTreeMVFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
VPTree.VPTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
VectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric)
Creates a new Vector Collection from the given source using the provided metric.
|
VectorCollection<V> |
VectorArray.VectorArrayFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RTree.RTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RandomBallCoverOneShot.RandomBallCoverOneShotFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RandomBallCover.RandomBallCoverFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
KDTree.KDTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
EuclideanCollection.EuclideanCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
DefaultVectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
CoverTree.CoverTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
VPTreeMV.VPTreeMVFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
VPTree.VPTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
VectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool)
Creates a new Vector Collection from the given source using the provided metric.
|
VectorCollection<V> |
VectorArray.VectorArrayFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
RTree.RTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
RandomBallCoverOneShot.RandomBallCoverOneShotFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
RandomBallCover.RandomBallCoverFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
KDTree.KDTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
EuclideanCollection.EuclideanCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
DefaultVectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
CoverTree.CoverTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
void |
VectorArray.setDistanceMetric(DistanceMetric distanceMetric) |
Constructor and Description |
---|
CoverTree(DistanceMetric dm) |
CoverTree(List<V> source,
DistanceMetric dm) |
CoverTree(List<V> source,
DistanceMetric dm,
ExecutorService threadpool) |
CoverTree(List<V> source,
DistanceMetric dm,
ExecutorService threadpool,
boolean looseBounds) |
KDTree(List<V> vecs,
DistanceMetric distanceMetric)
Creates a new KDTree with the given data and methods.
|
KDTree(List<V> vecs,
DistanceMetric distanceMetric,
KDTree.PivotSelection pvSelection)
Creates a new KDTree with the given data and methods.
|
KDTree(List<V> vecs,
DistanceMetric distanceMetric,
KDTree.PivotSelection pvSelection,
ExecutorService threadpool)
Creates a new KDTree with the given data and methods.
|
RandomBallCover(DistanceMetric dm) |
RandomBallCover(List<V> vecs,
DistanceMetric dm)
Creates a new Random Ball Cover
|
RandomBallCover(List<V> vecs,
DistanceMetric dm,
ExecutorService execServ)
Creates a new Random Ball Cover
|
RandomBallCoverOneShot(List<V> vecs,
DistanceMetric dm)
Creates a new one-shot version of the Random Cover Ball.
|
RandomBallCoverOneShot(List<V> vecs,
DistanceMetric dm,
ExecutorService execServ)
Creates a new one-shot version of the Random Cover Ball.
|
RandomBallCoverOneShot(List<V> vecs,
DistanceMetric dm,
int s)
Creates a new one-shot version of the Random Cover Ball.
|
RandomBallCoverOneShot(List<V> vecs,
DistanceMetric dm,
int s,
ExecutorService execServ)
Creates a new one-shot version of the Random Cover Ball.
|
RTree(int dimensions,
DistanceMetric dm) |
RTree(int dimensions,
DistanceMetric dm,
int max) |
RTree(int dimensions,
DistanceMetric dm,
int max,
int min) |
VectorArray(DistanceMetric distanceMetric) |
VectorArray(DistanceMetric distanceMetric,
Collection<? extends V> c) |
VectorArray(DistanceMetric distanceMetric,
int initialCapacity) |
VPTree(DistanceMetric dm) |
VPTree(List<V> list,
DistanceMetric dm) |
VPTree(List<V> list,
DistanceMetric dm,
ExecutorService threadpool) |
VPTree(List<V> list,
DistanceMetric dm,
VPTree.VPSelection vpSelection) |
VPTree(List<V> list,
DistanceMetric dm,
VPTree.VPSelection vpSelection,
Random rand,
int sampleSize,
int searchIterations) |
VPTree(List<V> list,
DistanceMetric dm,
VPTree.VPSelection vpSelection,
Random rand,
int sampleSize,
int searchIterations,
ExecutorService threadpool) |
VPTreeMV(DistanceMetric dm) |
VPTreeMV(List<V> list,
DistanceMetric dm) |
VPTreeMV(List<V> list,
DistanceMetric dm,
ExecutorService threadpool) |
VPTreeMV(List<V> list,
DistanceMetric dm,
VPTree.VPSelection vpSelection) |
VPTreeMV(List<V> list,
DistanceMetric dm,
VPTree.VPSelection vpSelection,
Random rand,
int sampleSize,
int searchIterations) |
VPTreeMV(List<V> list,
DistanceMetric dm,
VPTree.VPSelection vpSelection,
Random rand,
int sampleSize,
int searchIterations,
ExecutorService threadpool) |
Modifier and Type | Method and Description |
---|---|
VectorCollection<V> |
RandomProjectionLSH.RandomProjectionLSHFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RandomProjectionLSH.RandomProjectionLSHFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
Constructor and Description |
---|
E2LSH(List<V> vecs,
double radius,
double eps,
int w,
int k,
double delta,
DistanceMetric dm)
Creates a new LSH scheme for a given distance metric
|
E2LSH(List<V> vecs,
double radius,
double eps,
int w,
int k,
double delta,
DistanceMetric dm,
List<Double> distCache)
Creates a new LSH scheme for a given distance metric
|
Modifier and Type | Method and Description |
---|---|
abstract DistanceMetric |
MetricParameter.getMetric()
Returns the distance metric that was used for this learner
|
Modifier and Type | Method and Description |
---|---|
abstract boolean |
MetricParameter.setMetric(DistanceMetric val)
Sets the distance metric that should be sued
|
Copyright © 2017. All rights reserved.