Package | Description |
---|---|
jsat.classifiers.bayesian | |
jsat.clustering | |
jsat.distributions.multivariate |
Constructor and Description |
---|
BestClassDistribution(MultivariateDistribution baseDist) |
BestClassDistribution(MultivariateDistribution baseDist,
boolean usePriors) |
Modifier and Type | Class and Description |
---|---|
class |
EMGaussianMixture
An implementation of Gaussian Mixture models that learns the specified number of Gaussians using Expectation Maximization algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
Dirichlet
An implementation of the Dirichlet distribution.
|
class |
MetricKDE
MetricKDE is a generalization of the
KernelDensityEstimator to the multivariate case. |
class |
MultivariateDistributionSkeleton
Common class for implementing a multivariate distribution.
|
class |
MultivariateKDE
There are several methods of generalizing the
KernelDensityEstimator to the multivariate case. |
class |
NormalM
Class for the multivariate Normal distribution.
|
class |
ProductKDE
The Product Kernel Density Estimator is a generalization of the
KernelDensityEstimator to the multivariate case. |
class |
SymmetricDirichlet
The Symmetric Dirichlet Distribution is a special case of the
Dirichlet distribution, and occurs when all alphas have the same value. |
Modifier and Type | Method and Description |
---|---|
abstract MultivariateDistribution |
MultivariateDistributionSkeleton.clone() |
MultivariateDistribution |
MultivariateDistribution.clone() |
Copyright © 2017. All rights reserved.