Package | Description |
---|---|
jsat.classifiers.linear.kernelized | |
jsat.classifiers.svm | |
jsat.clustering.kmeans | |
jsat.datatransform.kernel | |
jsat.distributions.kernels | |
jsat.linear.distancemetrics | |
jsat.regression |
Modifier and Type | Field and Description |
---|---|
protected KernelTrick |
DUOL.k
Kernel trick to use
|
Modifier and Type | Method and Description |
---|---|
KernelTrick |
Projectron.getKernel()
Returns the kernel trick in use
|
KernelTrick |
OSKL.getKernel()
Returns the kernel to use
|
KernelTrick |
KernelSGD.getKernel()
Returns the kernel in use
|
KernelTrick |
DUOL.getKernel()
Returns the kernel trick in use
|
KernelTrick |
CSKLR.getKernel()
Returns the kernel trick in use
|
KernelTrick |
BOGD.getKernel()
Returns the kernel to use
|
KernelTrick |
Forgetron.getKernelTrick()
Returns the current kernel trick
|
KernelTrick |
ALMA2K.getKernelTrick()
Returns the kernel in use
|
Modifier and Type | Method and Description |
---|---|
void |
Projectron.setKernel(KernelTrick k)
Sets the kernel trick to be used
|
void |
OSKL.setKernel(KernelTrick k)
Sets the kernel to use
|
void |
KernelSGD.setKernel(KernelTrick kernel)
Sets the kernel to use
|
void |
DUOL.setKernel(KernelTrick k)
Sets the kernel trick to use
|
void |
CSKLR.setKernel(KernelTrick k)
Set which kernel trick to use
|
void |
BOGD.setKernel(KernelTrick k)
Sets the kernel to use
|
void |
Forgetron.setKernelTrick(KernelTrick K)
Sets the kernel trick to use
|
void |
ALMA2K.setKernelTrick(KernelTrick K)
Sets the kernel to use
|
Constructor and Description |
---|
ALMA2K(KernelTrick kernel,
double alpha)
Creates a new kernelized ALMA2 object
|
BOGD(KernelTrick k,
int budget,
double eta,
double reg,
double maxCoeff)
Creates a new BOGD++ learner using the
HingeLoss |
BOGD(KernelTrick k,
int budget,
double eta,
double reg,
double maxCoeff,
LossC lossC)
Creates a new BOGD++ learner
|
CSKLR(double eta,
KernelTrick k,
double R,
CSKLR.UpdateMode mode)
Creates a new CSKLR object
|
CSKLRBatch(double eta,
KernelTrick kernel,
double R,
CSKLR.UpdateMode mode,
SupportVectorLearner.CacheMode cacheMode)
Creates a new SCKLR Batch learning object
|
DUOL(KernelTrick k)
Creates a new DUOL learner
|
Forgetron(KernelTrick kernel,
int budget)
Creates a new Forgetron
|
KernelSGD(LossFunc loss,
KernelTrick kernel,
double lambda,
KernelPoint.BudgetStrategy budgetStrategy,
int budgetSize)
Creates a new Kernel SGD object
|
KernelSGD(LossFunc loss,
KernelTrick kernel,
double lambda,
KernelPoint.BudgetStrategy budgetStrategy,
int budgetSize,
double eta,
double errorTolerance)
Creates a new Kernel SGD object
|
OSKL(KernelTrick k,
double R)
Creates a new OSKL learner using the
LogisticLoss . |
OSKL(KernelTrick k,
double eta,
double G,
double R)
Creates a new OSKL learner using the
LogisticLoss |
OSKL(KernelTrick k,
double eta,
double G,
double R,
LossC lossC)
Creates a new OSKL learner
|
Projectron(KernelTrick k)
Creates a new Projectron++ learner
|
Projectron(KernelTrick k,
double eta)
Creates a new Projectron++ learner
|
Projectron(KernelTrick k,
double eta,
boolean useMarginUpdates)
Creates a new Projectron learner
|
Modifier and Type | Method and Description |
---|---|
KernelTrick |
SupportVectorLearner.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
SVMnoBias.setKernel(KernelTrick kernel) |
void |
SupportVectorLearner.setKernel(KernelTrick kernel)
Sets the kernel trick to use
|
Constructor and Description |
---|
DCSVM(KernelTrick k)
Creates a new DC-SVM for the given kernel
|
LSSVM(KernelTrick kernel)
Creates a new LS-SVM learner that does not use a cache
|
LSSVM(KernelTrick kernel,
SupportVectorLearner.CacheMode cacheMode)
Creates a new LS-SVM learner
|
PegasosK(double regularization,
int iterations,
KernelTrick kernel)
Creates a new kernelized Pegasos SVM solver
|
PegasosK(double regularization,
int iterations,
KernelTrick kernel,
SupportVectorLearner.CacheMode cacheMode)
Creates a new kernelized Pegasos SVM solver
|
PlattSMO(KernelTrick kf)
Creates a new SVM object that uses no cache mode.
|
SBP(KernelTrick kernel,
SupportVectorLearner.CacheMode cacheMode,
int iterations,
double v)
Creates a new SBP SVM learner
|
SupportVectorLearner(KernelTrick kernel,
SupportVectorLearner.CacheMode cacheMode)
Creates a new Support Vector Learner
|
SVMnoBias(KernelTrick kf)
Creates a new SVM object that uses no cache mode.
|
Modifier and Type | Field and Description |
---|---|
protected KernelTrick |
KernelKMeans.kernel
The kernel trick to use
|
Constructor and Description |
---|
ElkanKernelKMeans(KernelTrick kernel)
Creates a new Kernel K Means object
|
KernelKMeans(KernelTrick kernel) |
LloydKernelKMeans(KernelTrick kernel)
Creates a new Kernel K Means object
|
Modifier and Type | Method and Description |
---|---|
KernelTrick |
Nystrom.getKernel() |
KernelTrick |
KernelPCA.getKernel() |
Modifier and Type | Method and Description |
---|---|
static List<Vec> |
Nystrom.sampleBasisVectors(KernelTrick k,
DataSet dataset,
List<Vec> X,
Nystrom.SamplingMethod method,
int basisSize,
boolean sampleWithReplacment,
Random rand)
Performs sampling of a data set for a subset of the vectors that make a
good set of basis vectors for forming an approximation of a full kernel
space.
|
void |
Nystrom.setKernel(KernelTrick k) |
void |
KernelPCA.setKernel(KernelTrick k) |
Constructor and Description |
---|
KernelPCA(KernelTrick k,
DataSet ds,
int dimensions,
int basisSize,
Nystrom.SamplingMethod samplingMethod)
Creates a new Kernel PCA transform object
|
KernelPCA(KernelTrick k,
int dimensions)
Creates a new Kernel PCA transform object
|
KernelPCA(KernelTrick k,
int dimensions,
int basisSize,
Nystrom.SamplingMethod samplingMethod)
Creates a new Kernel PCA transform object
|
Nystrom(KernelTrick k,
DataSet dataset,
int basisSize,
Nystrom.SamplingMethod method)
Creates a new Nystrom approximation object
|
Nystrom(KernelTrick k,
DataSet dataset,
int basisSize,
Nystrom.SamplingMethod method,
double ridge,
boolean sampleWithReplacment)
Creates a new Nystrom approximation object
|
Nystrom(KernelTrick k,
int basisSize)
Creates a new Nystrom approximation object
|
Nystrom(KernelTrick k,
int basisSize,
Nystrom.SamplingMethod method,
double ridge,
boolean sampleWithReplacment)
Creates a new Nystrom approximation object
|
Modifier and Type | Class and Description |
---|---|
class |
BaseKernelTrick
This provides a simple base implementation for the cache related methods in
Kernel Trick.
|
class |
BaseL2Kernel
Many Kernels can be described in terms the L2 norm with some operations
performed on it.
|
class |
DistanceMetricBasedKernel
This abstract class provides the means of implementing a Kernel based off
some
DistanceMetric . |
class |
GeneralRBFKernel
This class provides a generalization of the
RBFKernel to arbitrary
distance metrics , and is of the form
exp(-d(x, y)2/(2 σ 2
)). |
class |
LinearKernel
Provides a linear kernel function, which computes the normal dot product.
|
class |
NormalizedKernel
This provides a wrapper kernel that produces a normalized kernel trick from
any input kernel trick.
|
class |
PolynomialKernel
Provides a Polynomial Kernel of the form
k(x,y) = (alpha * x.y + c)^d |
class |
PukKernel
The PUK kernel is an alternative to the RBF Kernel.
|
class |
RationalQuadraticKernel
Provides an implementation of the Rational Quadratic Kernel, which is of the
form:
k(x, y) = 1 - ||x-y||2 / (||x-y||2 + c) |
class |
RBFKernel
Provides a kernel for the Radial Basis Function, which is of the form
k(x, y) = exp(-||x-y||2/(2*σ2)) |
class |
SigmoidKernel
Provides an implementation of the Sigmoid (Hyperbolic Tangent) Kernel, which
is of the form:
k(x, y) = tanh(alpha * < x, y > +c) Technically, this kernel is not positive definite. |
Modifier and Type | Field and Description |
---|---|
protected KernelTrick |
KernelPoint.k |
Modifier and Type | Method and Description |
---|---|
KernelTrick |
KernelTrick.clone() |
KernelTrick |
GeneralRBFKernel.clone() |
abstract KernelTrick |
DistanceMetricBasedKernel.clone() |
abstract KernelTrick |
BaseL2Kernel.clone() |
abstract KernelTrick |
BaseKernelTrick.clone() |
KernelTrick |
KernelPoints.getKernel() |
Constructor and Description |
---|
KernelPoint(KernelTrick k,
double errorTolerance)
Creates a new Kernel Point, which is a point in the kernel space
represented by an accumulation of vectors and uses the
KernelPoint.BudgetStrategy.PROJECTION strategy with an unbounded maximum
budget |
KernelPoints(KernelTrick k,
int points,
double errorTolerance)
Creates a new set of kernel points that uses one unified gram matrix for
each KernelPoint
|
KernelPoints(KernelTrick k,
int points,
double errorTolerance,
boolean mergeGrams)
Creates a new set of kernel points
|
NormalizedKernel(KernelTrick source_kernel) |
Constructor and Description |
---|
KernelDistance(KernelTrick kf)
Creates a distane metric from the given kernel.
|
Modifier and Type | Method and Description |
---|---|
KernelTrick |
KernelRidgeRegression.getKernel()
Returns the kernel in use
|
Modifier and Type | Method and Description |
---|---|
void |
KernelRidgeRegression.setKernel(KernelTrick k)
Sets the kernel trick to use
|
Constructor and Description |
---|
KernelRidgeRegression(double lambda,
KernelTrick kernel)
Creates a new Kernel Ridge Regression learner
|
KernelRLS(KernelTrick k,
double errorTolerance)
Creates a new Kernel RLS learner
|
Copyright © 2017. All rights reserved.