Modifier and Type | Method and Description |
---|---|
KernelFunction |
LWL.getKernelFunction()
Returns the kernel function that will be used to set the weights.
|
Modifier and Type | Method and Description |
---|---|
void |
LWL.setKernelFunction(KernelFunction kf)
Sets the kernel function that will be used to set the weights of each
data point in the local set
|
Constructor and Description |
---|
LWL(Classifier classifier,
int k,
DistanceMetric dm,
KernelFunction kf)
Creates a new LWL classifier
|
LWL(Classifier classifier,
int k,
DistanceMetric dm,
KernelFunction kf,
VectorCollectionFactory<VecPaired<Vec,Double>> vcf)
Creates a new LWL classifier
|
LWL(Regressor regressor,
int k,
DistanceMetric dm,
KernelFunction kf)
Creates a new LWL Regressor
|
LWL(Regressor regressor,
int k,
DistanceMetric dm,
KernelFunction kf,
VectorCollectionFactory<VecPaired<Vec,Double>> vcf)
Creates a new LWL Regressor
|
Modifier and Type | Field and Description |
---|---|
static KernelFunction |
SOM.DEFAULT_KF |
Modifier and Type | Method and Description |
---|---|
static KernelFunction |
KernelDensityEstimator.autoKernel(Vec dataPoints)
Automatically selects a good Kernel function for the data set that balances Execution time and accuracy
|
Constructor and Description |
---|
KernelDensityEstimator(Vec dataPoints,
KernelFunction k) |
KernelDensityEstimator(Vec dataPoints,
KernelFunction k,
double h) |
KernelDensityEstimator(Vec dataPoints,
KernelFunction k,
double[] weights) |
KernelDensityEstimator(Vec dataPoints,
KernelFunction k,
double h,
double[] weights) |
Modifier and Type | Class and Description |
---|---|
class |
BiweightKF |
class |
EpanechnikovKF |
class |
GaussKF |
class |
TriweightKF |
class |
UniformKF |
Modifier and Type | Field and Description |
---|---|
static KernelFunction |
MetricKDE.DEFAULT_KF
When estimating the bandwidth, the distances of the k'th nearest
neighbors are used to perform the estimate.
|
Modifier and Type | Method and Description |
---|---|
KernelFunction |
ProductKDE.getKernelFunction() |
abstract KernelFunction |
MultivariateKDE.getKernelFunction() |
KernelFunction |
MetricKDE.getKernelFunction() |
Modifier and Type | Method and Description |
---|---|
void |
MetricKDE.setKernelFunction(KernelFunction kf) |
Constructor and Description |
---|
MetricKDE(KernelFunction kf,
DistanceMetric distanceMetric) |
MetricKDE(KernelFunction kf,
DistanceMetric distanceMetric,
VectorCollectionFactory<VecPaired<Vec,Integer>> vcf)
Creates a new KDE object that still needs a data set to model the distribution of
|
MetricKDE(KernelFunction kf,
DistanceMetric distanceMetric,
VectorCollectionFactory<VecPaired<Vec,Integer>> vcf,
int defaultK,
double defaultStndDev)
Creates a new KDE object that still needs a data set to model the distribution of
|
ProductKDE(KernelFunction k)
Creates a new KDE that uses the specified kernel
|
Modifier and Type | Method and Description |
---|---|
List<KernelFunction> |
KernelFunctionParameter.parameterOptions() |
Copyright © 2017. All rights reserved.