Package | Description |
---|---|
jsat.classifiers | |
jsat.classifiers.bayesian | |
jsat.classifiers.trees | |
jsat.regression |
Modifier and Type | Method and Description |
---|---|
DataPointPair<Integer> |
ClassificationDataSet.getDataPointPair(int i)
Returns the i'th data point from the data set, paired with the integer indicating its true class
|
Modifier and Type | Method and Description |
---|---|
List<DataPointPair<Integer>> |
ClassificationDataSet.getAsDPPList()
Returns the data set as a list of
DataPointPair . |
List<DataPointPair<Double>> |
ClassificationDataSet.getAsFloatDPPList()
Returns the data set as a list of
DataPointPair . |
Constructor and Description |
---|
ClassificationDataSet(List<DataPointPair<Integer>> data,
CategoricalData predicting)
Creates a new data set for classification problems from the given list of data points.
|
Modifier and Type | Method and Description |
---|---|
int |
ConditionalProbabilityTable.dataPointToCord(DataPointPair<Integer> dataPoint,
int targetClass,
int[] cord)
Converts a data point pair into a coordinate.
|
double |
ConditionalProbabilityTable.query(int targetClass,
DataPointPair<Integer> dataPoint)
Queries the CPT for the probability that the class value of targetClas would occur with the given DataPointPair.
|
Modifier and Type | Method and Description |
---|---|
List<List<DataPointPair<Integer>>> |
DecisionStump.trainC(List<DataPointPair<Integer>> dataPoints,
Set<Integer> options)
This is a helper function that does the work of training this stump.
|
List<List<DataPointPair<Integer>>> |
DecisionStump.trainC(List<DataPointPair<Integer>> dataPoints,
Set<Integer> options,
ExecutorService ex) |
List<List<DataPointPair<Double>>> |
DecisionStump.trainR(List<DataPointPair<Double>> dataPoints,
Set<Integer> options) |
List<List<DataPointPair<Double>>> |
DecisionStump.trainR(List<DataPointPair<Double>> dataPoints,
Set<Integer> options,
ExecutorService ex) |
Modifier and Type | Method and Description |
---|---|
protected static <T> void |
DecisionStump.distributMissing(List<List<DataPointPair<T>>> splits,
double[] fracs,
List<DataPointPair<T>> hadMissing)
Distributes a list of datapoints that had missing values to each split, re-weighted by the indicated fractions
|
protected static <T> void |
DecisionStump.distributMissing(List<List<DataPointPair<T>>> splits,
double[] fracs,
List<DataPointPair<T>> hadMissing)
Distributes a list of datapoints that had missing values to each split, re-weighted by the indicated fractions
|
protected static <T> void |
DecisionStump.distributMissing(List<List<DataPointPair<T>>> splits,
List<DataPointPair<T>> hadMissing)
Distributes a list of datapoints that had missing values to each split, re-weighted by the indicated fractions
|
protected static <T> void |
DecisionStump.distributMissing(List<List<DataPointPair<T>>> splits,
List<DataPointPair<T>> hadMissing)
Distributes a list of datapoints that had missing values to each split, re-weighted by the indicated fractions
|
protected double |
DecisionStump.getGain(ImpurityScore origScore,
List<List<DataPointPair<Integer>>> aSplit)
From the score for the original set that is being split, this computes
the gain as the improvement in classification from the original split.
|
protected DecisionTree.Node |
RandomDecisionTree.makeNodeC(List<DataPointPair<Integer>> dataPoints,
Set<Integer> options,
int depth,
ExecutorService threadPool,
ModifiableCountDownLatch mcdl) |
protected DecisionTree.Node |
DecisionTree.makeNodeC(List<DataPointPair<Integer>> dataPoints,
Set<Integer> options,
int depth,
ExecutorService threadPool,
ModifiableCountDownLatch mcdl)
Makes a new node for classification
|
protected DecisionTree.Node |
RandomDecisionTree.makeNodeR(List<DataPointPair<Double>> dataPoints,
Set<Integer> options,
int depth,
ExecutorService threadPool,
ModifiableCountDownLatch mcdl) |
protected DecisionTree.Node |
DecisionTree.makeNodeR(List<DataPointPair<Double>> dataPoints,
Set<Integer> options,
int depth,
ExecutorService threadPool,
ModifiableCountDownLatch mcdl)
Makes a new node for regression
|
static void |
TreePruner.prune(TreeNodeVisitor root,
TreePruner.PruningMethod method,
List<DataPointPair<Integer>> testSet)
Performs pruning starting from the root node of a tree
|
List<List<DataPointPair<Integer>>> |
DecisionStump.trainC(List<DataPointPair<Integer>> dataPoints,
Set<Integer> options)
This is a helper function that does the work of training this stump.
|
List<List<DataPointPair<Integer>>> |
DecisionStump.trainC(List<DataPointPair<Integer>> dataPoints,
Set<Integer> options,
ExecutorService ex) |
List<List<DataPointPair<Double>>> |
DecisionStump.trainR(List<DataPointPair<Double>> dataPoints,
Set<Integer> options) |
List<List<DataPointPair<Double>>> |
DecisionStump.trainR(List<DataPointPair<Double>> dataPoints,
Set<Integer> options,
ExecutorService ex) |
Modifier and Type | Field and Description |
---|---|
protected List<DataPointPair<Double>> |
RegressionDataSet.dataPoints
The list of all data points, paired with their true regression output
|
Modifier and Type | Method and Description |
---|---|
DataPointPair<Double> |
RegressionDataSet.getDataPointPair(int i)
Returns the i'th data point in the data set paired with its target regressor value.
|
Modifier and Type | Method and Description |
---|---|
List<DataPointPair<Double>> |
RegressionDataSet.getAsDPPList()
Returns a new list containing copies of the data points in this data set,
paired with their regression target values.
|
List<DataPointPair<Double>> |
RegressionDataSet.getDPPList()
Returns a new list containing the data points in this data set, paired with
their regression target values.
|
Modifier and Type | Method and Description |
---|---|
void |
RegressionDataSet.addDataPointPair(DataPointPair<Double> pair) |
Modifier and Type | Method and Description |
---|---|
static RegressionDataSet |
RegressionDataSet.usingDPPList(List<DataPointPair<Double>> list)
Creates a new data set that uses the given list as its backing list.
|
Constructor and Description |
---|
RegressionDataSet(List<DataPointPair<Double>> list)
Creates a new regression data set by copying all the data points
in the given list.
|
Copyright © 2017. All rights reserved.