Package | Description |
---|---|
jsat.classifiers.linear | |
jsat.classifiers.neuralnetwork | |
jsat.math.decayrates | |
jsat.parameters | |
jsat.regression |
Modifier and Type | Method and Description |
---|---|
DecayRate |
LinearSGD.getEtaDecay()
Returns the decay rate in use
|
DecayRate |
StochasticMultinomialLogisticRegression.getLearningRateDecay()
Returns the decay rate in use
|
Modifier and Type | Method and Description |
---|---|
void |
LinearSGD.setEtaDecay(DecayRate decay)
Sets the rate at which
η is decayed at each
update. |
void |
StochasticMultinomialLogisticRegression.setLearningRateDecay(DecayRate learningRateDecay)
Sets the decay rate used to reduce the learning rate after each epoch.
|
Constructor and Description |
---|
LinearSGD(LossFunc loss,
double eta,
DecayRate decay,
double lambda0,
double lambda1)
Creates a new LinearSGD learner.
|
Modifier and Type | Field and Description |
---|---|
static DecayRate |
SOM.DEFAULT_LEARNING_DECAY |
static DecayRate |
SOM.DEFAULT_NEIGHBOR_DECAY |
Modifier and Type | Method and Description |
---|---|
DecayRate |
SGDNetworkTrainer.getEtaDecay() |
DecayRate |
SOM.getLearningDecay()
The rate the SOM learns decays over each iteration, and this defines the
way in which the rate decays.
|
DecayRate |
LVQ.getLearningDecay()
Returns the method used to decay the learning rate over each iteration
|
DecayRate |
BackPropagationNet.getLearningRateDecay()
Returns the decay rate used to adjust the learning rate after each epoch
|
DecayRate |
SOM.getNeighborDecay()
The range of effect each data point has decays with each iteration, and
this defines the way in which the rate decays.
|
Modifier and Type | Method and Description |
---|---|
void |
SGDNetworkTrainer.setEtaDecay(DecayRate etaDecay)
Sets the decay rate on the global learning rate over time
|
void |
SOM.setLearningDecay(DecayRate learningDecay)
The rate the SOM learns decays over each iteration, and this defines the
way in which the rate decays.
|
void |
LVQ.setLearningDecay(DecayRate learningDecay)
Sets the decay rate to apply to the learning rate.
|
void |
BackPropagationNet.setLearningRateDecay(DecayRate learningRateDecay)
Sets the decay rate used to adjust the learning rate after each epoch
|
void |
SOM.setNeighborDecay(DecayRate neighborDecay)
The range of effect each data point has decays with each iteration, and
this defines the way in which the rate decays.
|
Constructor and Description |
---|
LVQ(DistanceMetric dm,
int iterations,
double learningRate,
int representativesPerClass,
LVQ.LVQVersion lvqVersion,
DecayRate learningDecay)
Creates a new LVQ instance
|
LVQLLC(DistanceMetric dm,
int iterations,
Classifier localClasifier,
double learningRate,
int representativesPerClass,
LVQ.LVQVersion lvqVersion,
DecayRate learningDecay)
Creates a new LVQ-LLC instance
|
Modifier and Type | Class and Description |
---|---|
class |
ExponetialDecay
The Exponential Decay requires the maximum time step to be explicitly known ahead
of time.
|
class |
InverseDecay
Decays an input by the inverse of the amount of time that has occurred, the
max time being irrelevant.
|
class |
LinearDecay
The Linear Decay requires the maximum time step to be explicitly known ahead
of time.
|
class |
NoDecay
A possible value for a decaying learning rate.
|
class |
PowerDecay
Decays an input by power of the amount of time that has occurred, the
max time being irrelevant.
|
Modifier and Type | Method and Description |
---|---|
DecayRate |
PowerDecay.clone() |
DecayRate |
NoDecay.clone() |
DecayRate |
LinearDecay.clone() |
DecayRate |
InverseDecay.clone() |
DecayRate |
ExponetialDecay.clone() |
DecayRate |
DecayRate.clone() |
Modifier and Type | Method and Description |
---|---|
List<DecayRate> |
DecayRateParameter.parameterOptions() |
Modifier and Type | Method and Description |
---|---|
DecayRate |
StochasticRidgeRegression.getLearningDecay()
Returns the learning decay rate used
|
Modifier and Type | Method and Description |
---|---|
void |
StochasticRidgeRegression.setLearningDecay(DecayRate learningDecay)
Sets the learning rate decay function to use.
|
Constructor and Description |
---|
StochasticRidgeRegression(double lambda,
int epochs,
int batchSize,
double learningRate,
DecayRate learningDecay)
Creates a new stochastic Ridge Regression learner
|
Copyright © 2017. All rights reserved.