Package | Description |
---|---|
jsat.classifiers.linear | |
jsat.math.optimization |
Modifier and Type | Class and Description |
---|---|
class |
LinearBatch.GradFunction
|
Modifier and Type | Field and Description |
---|---|
static FunctionVec |
RosenbrockFunction.GRADIENT
The gradient of the Rosenbrock function
|
Modifier and Type | Method and Description |
---|---|
FunctionVec |
RosenbrockFunction.getDerivative()
Returns the gradient of the Rosenbrock function
|
Modifier and Type | Method and Description |
---|---|
double |
WolfeNWLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk) |
double |
LineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk)
Attempts to find the value of α that minimizes
f(x+α p)
|
double |
BacktrackingArmijoLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk) |
double |
WolfeNWLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk,
ExecutorService ex) |
double |
LineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk,
ExecutorService ex)
Attempts to find the value of α that minimizes
f(x+α p)
|
double |
BacktrackingArmijoLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk,
ExecutorService ex) |
void |
Optimizer2.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp)
Attempts to optimize the given function by finding the value of
w
that will minimize the value returned by f(w) , using
w = x0 as an initial starting point. |
void |
ModifiedOWLQN.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp) |
void |
LBFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp) |
void |
BFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp) |
void |
Optimizer2.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex)
Attempts to optimize the given function by finding the value of
w
that will minimize the value returned by f(w) , using
w = x0 as an initial starting point. |
void |
ModifiedOWLQN.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex) |
void |
LBFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex) |
void |
BFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex) |
Copyright © 2017. All rights reserved.