Modifier and Type | Class and Description |
---|---|
class |
LinearBatch.LossFunction
|
class |
LinearBatch.LossMCFunction |
Modifier and Type | Class and Description |
---|---|
static class |
BackPropagationNet.ActivationFunction
The neural network needs an activation function for the neurons that is
used to predict from inputs and train the network by propagating the
errors back through the network.
|
Modifier and Type | Method and Description |
---|---|
abstract Function |
BackPropagationNet.ActivationFunction.getD()
Returns the function object for the derivative of this activation
function.
|
Modifier and Type | Method and Description |
---|---|
static Function |
Distribution.getFunctionCDF(Distribution dist)
Wraps the
Distribution.cdf(double) function of the given distribution in a
function object for use. |
static Function |
ContinuousDistribution.getFunctionPDF(ContinuousDistribution dist)
Wraps the
ContinuousDistribution.pdf(double) function of the given distribution in a
function object for use. |
Modifier and Type | Method and Description |
---|---|
protected double |
Distribution.invCdf(double p,
Function cdf)
This method is provided as a quick helper function, as any CDF has a 1 to
1 mapping with an inverse, CDF.-1.
|
Modifier and Type | Method and Description |
---|---|
protected double |
DiscreteDistribution.invCdf(double p,
Function cdf) |
Modifier and Type | Method and Description |
---|---|
static double |
VecOps.accumulateSum(Vec w,
Vec x,
Vec y,
Function f)
Computes the result of ∑∀ i ∈ |w| wi
f(xi-yi)
|
void |
Vec.applyFunction(Function f)
Applies the given function to each and every value in the vector.
|
void |
SparseVector.applyFunction(Function f) |
Modifier and Type | Interface and Description |
---|---|
interface |
FunctionP
FunctionP is the same as
Function except it supports parallel
computation of the result. |
Modifier and Type | Class and Description |
---|---|
class |
FunctionBase
Simple base abstract class for implementing a
Function by
implementing FunctionBase.f(double[]) to call the vector version. |
class |
IndexFunction |
Modifier and Type | Field and Description |
---|---|
static Function |
MathTricks.absFunc
Convenience object for taking the
abs of the
first index |
static Function |
MathTricks.expFunc
Convenience object for taking the
exp of the
first index |
static Function |
MathTricks.invsFunc
Convenience object for taking the inverse (x-1) of the first
index.
|
static Function |
MathTricks.logFunc
Convenience object for taking the
log of the
first index |
static Function |
MathTricks.sqrdFunc
Convenience object for taking the squared value
of the first index
|
static Function |
MathTricks.sqrtFunc
Convenience object for taking the
square root
of the first index |
Modifier and Type | Method and Description |
---|---|
static double |
Romberg.romb(Function f,
double a,
double b) |
static double |
Romberg.romb(Function f,
double a,
double b,
int max) |
static double |
Trapezoidal.trapz(Function f,
double a,
double b,
int N) |
Modifier and Type | Class and Description |
---|---|
class |
RosenbrockFunction
The Rosenbrock function is a function with at least one minima with the value zero.
|
Modifier and Type | Method and Description |
---|---|
double |
WolfeNWLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk) |
double |
LineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk)
Attempts to find the value of α that minimizes
f(x+α p)
|
double |
BacktrackingArmijoLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk) |
double |
WolfeNWLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk,
ExecutorService ex) |
double |
LineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk,
ExecutorService ex)
Attempts to find the value of α that minimizes
f(x+α p)
|
double |
BacktrackingArmijoLineSearch.lineSearch(double alpha_max,
Vec x_k,
Vec x_grad,
Vec p_k,
Function f,
FunctionVec fp,
double f_x,
double gradP,
Vec x_alpha_pk,
double[] fxApRet,
Vec grad_x_alpha_pk,
ExecutorService ex) |
static double |
GoldenSearch.minimize(double eps,
int maxIterations,
double a,
double b,
int pos,
Function f,
double... args)
Finds the local minimum of the function
f . |
Vec |
Optimizer.optimize(double eps,
int iterationLimit,
Function f,
Function fd,
Vec vars,
List<Vec> inputs,
Vec outputs)
Performs optimization on the given inputs to find the minima of the function.
|
Vec |
NelderMead.optimize(double eps,
int iterationLimit,
Function f,
Function fd,
Vec vars,
List<Vec> inputs,
Vec outputs) |
Vec |
IterativelyReweightedLeastSquares.optimize(double eps,
int iterationLimit,
Function f,
Function fd,
Vec vars,
List<Vec> inputs,
Vec outputs) |
Vec |
Optimizer.optimize(double eps,
int iterationLimit,
Function f,
Function fd,
Vec vars,
List<Vec> inputs,
Vec outputs,
ExecutorService threadpool)
Performs optimization on the given inputs to find the minima of the function.
|
Vec |
NelderMead.optimize(double eps,
int iterationLimit,
Function f,
Function fd,
Vec vars,
List<Vec> inputs,
Vec outputs,
ExecutorService threadpool) |
Vec |
IterativelyReweightedLeastSquares.optimize(double eps,
int iterationLimit,
Function f,
Function fd,
Vec vars,
List<Vec> inputs,
Vec outputs,
ExecutorService threadpool) |
Vec |
NelderMead.optimize(double eps,
int iterationLimit,
Function f,
List<Vec> initalPoints)
Attempts to find the minimal value of the given function.
|
void |
Optimizer2.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp)
Attempts to optimize the given function by finding the value of
w
that will minimize the value returned by f(w) , using
w = x0 as an initial starting point. |
void |
ModifiedOWLQN.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp) |
void |
LBFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp) |
void |
BFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp) |
void |
Optimizer2.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex)
Attempts to optimize the given function by finding the value of
w
that will minimize the value returned by f(w) , using
w = x0 as an initial starting point. |
void |
ModifiedOWLQN.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex) |
void |
LBFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex) |
void |
BFGS.optimize(double tolerance,
Vec w,
Vec x0,
Function f,
FunctionVec fp,
FunctionVec fpp,
ExecutorService ex) |
Modifier and Type | Method and Description |
---|---|
static double |
GoldenSearch.findMin(double min,
double max,
Function f,
double eps,
int maxSteps)
Attempts to numerically find the value
x that minimizes the one
dimensional function f(x) in the range [min, max] . |
Modifier and Type | Method and Description |
---|---|
static double |
Zeroin.root(double eps,
double a,
double b,
Function f,
double... args) |
static double |
Secant.root(double eps,
double a,
double b,
Function f,
double... args) |
static double |
RiddersMethod.root(double eps,
double a,
double b,
Function f,
double... args) |
static double |
Bisection.root(double eps,
double a,
double b,
Function f,
double... args) |
static double |
Zeroin.root(double eps,
double a,
double b,
int pos,
Function f,
double... args) |
static double |
Secant.root(double eps,
double a,
double b,
int pos,
Function f,
double... args) |
static double |
RiddersMethod.root(double eps,
double a,
double b,
int pos,
Function f,
double... args) |
static double |
Bisection.root(double eps,
double a,
double b,
int pos,
Function f,
double... args) |
static double |
Zeroin.root(double a,
double b,
Function f,
double... args) |
static double |
Secant.root(double a,
double b,
Function f,
double... args) |
static double |
RiddersMethod.root(double a,
double b,
Function f,
double... args) |
static double |
Bisection.root(double a,
double b,
Function f,
double... args)
Uses the bisection method to find the argument of some function f for which
f(args) = 0.
|
double |
Zeroin.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
double... args) |
double |
Secant.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
double... args) |
double |
RootFinder.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
double... args)
Attempts to numerical compute the root of a given function, such that f(args) = 0.
|
double |
RiddersMethod.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
double... args) |
double |
Bisection.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
double... args) |
double |
Zeroin.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
Vec args) |
double |
Secant.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
Vec args) |
double |
RootFinder.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
Vec args)
Attempts to numerical compute the root of a given function, such that f(args) = 0.
|
double |
RiddersMethod.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
Vec args) |
double |
Bisection.root(double eps,
int maxIterations,
double[] initialGuesses,
Function f,
int pos,
Vec args) |
static double |
Zeroin.root(double eps,
int maxIterations,
double a,
double b,
int pos,
Function f,
double... args)
Performs root finding on the function
f . |
static double |
Secant.root(double eps,
int maxIterations,
double x0,
double x1,
int pos,
Function f,
double... args) |
static double |
RiddersMethod.root(double eps,
int maxIterations,
double x1,
double x2,
int pos,
Function f,
double... args) |
static double |
Bisection.root(double eps,
int maxIterations,
double a,
double b,
int pos,
Function f,
double... args)
Uses the bisection method to find the argument of some function f for which
f(args) = 0.
|
Modifier and Type | Class and Description |
---|---|
class |
BinaryWordPresent
Provides a simple binary representation of bag-of-word vectors by simply
marking a value 1.0 if the token is present, and 0.0 if the token is not
present.
|
class |
OkapiBM25
Implements the Okapi BM25
word weighting scheme.
|
class |
TfIdf
Applies Term Frequency Inverse Document Frequency (TF IDF) weighting to the
word vectors.
|
class |
WordCount
Provides a simple representation of bag-of-word vectors by simply using the
number of occurrences for a word in a document as the weight for said word.
|
class |
WordWeighting
WordWeighting is an index function specifically mean for modifying the values
of a vectors used for a bag-of-words representation of text data.
|
Copyright © 2017. All rights reserved.