Package | Description |
---|---|
jsat.classifiers.neuralnetwork | |
jsat.linear.vectorcollection | |
jsat.linear.vectorcollection.lsh |
Modifier and Type | Field and Description |
---|---|
protected VectorCollection<VecPaired<Vec,Integer>> |
LVQ.vc
Contains the Learning vectors paired with their index in the weights array
|
Modifier and Type | Interface and Description |
---|---|
interface |
IncrementalCollection<V extends Vec>
This interface is for Vector Collections that support incremental
construction.
|
Modifier and Type | Class and Description |
---|---|
class |
CoverTree<V extends Vec>
This class implements the Cover-tree algorithm for answering nearest neighbor
queries.
|
class |
EuclideanCollection<V extends Vec>
Provides a specialized collections that only supports the
EuclideanDistance by brute force search. |
class |
KDTree<V extends Vec>
Standard KDTree implementation.
|
class |
RandomBallCover<V extends Vec>
An implementation of the exact search for the Random Ball Cover algorithm.
|
class |
RandomBallCoverOneShot<V extends Vec>
An implementation of the on shot search for the Random Ball Cover algorithm.
|
class |
RTree<V extends Vec> |
class |
VectorArray<V extends Vec>
This is the naive implementation of a Vector collection.
|
class |
VPTree<V extends Vec>
Provides an implementation of Vantage Point Trees, as described in
"Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces"
by Peter N.
|
class |
VPTreeMV<V extends Vec>
The VPTreeMV is an extension of the VPTree, the MV meaning "of Minimum Variance".
|
Modifier and Type | Method and Description |
---|---|
VectorCollection<V> |
VectorCollection.clone() |
VectorCollection<V> |
RTree.clone() |
VectorCollection<V> |
VPTreeMV.VPTreeMVFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
VPTree.VPTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
VectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric)
Creates a new Vector Collection from the given source using the provided metric.
|
VectorCollection<V> |
VectorArray.VectorArrayFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RTree.RTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RandomBallCoverOneShot.RandomBallCoverOneShotFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RandomBallCover.RandomBallCoverFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
KDTree.KDTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
EuclideanCollection.EuclideanCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
DefaultVectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
CoverTree.CoverTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
VPTreeMV.VPTreeMVFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
VPTree.VPTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
VectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool)
Creates a new Vector Collection from the given source using the provided metric.
|
VectorCollection<V> |
VectorArray.VectorArrayFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
RTree.RTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
RandomBallCoverOneShot.RandomBallCoverOneShotFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
RandomBallCover.RandomBallCoverFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
KDTree.KDTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
EuclideanCollection.EuclideanCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
DefaultVectorCollectionFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
VectorCollection<V> |
CoverTree.CoverTreeFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
Modifier and Type | Method and Description |
---|---|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.allEpsNeighbors(VectorCollection<V0> collection,
List<V1> search,
double radius,
ExecutorService threadpool)
Searches the given collection for all the neighbors within a distance of radius for every data point in the given search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.allNearestNeighbors(VectorCollection<V0> collection,
List<V1> search,
int k)
Searches the given collection for the k nearest neighbors for every data point in the given search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.allNearestNeighbors(VectorCollection<V0> collection,
List<V1> search,
int k,
ExecutorService threadpool)
Searches the given collection for the k nearest neighbors for every data point in the given search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.allNearestNeighbors(VectorCollection<V0> collection,
V1[] search,
int k)
Searches the given collection for the k nearest neighbors for every data point in the given search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.allNearestNeighbors(VectorCollection<V0> collection,
V1[] search,
int k,
ExecutorService threadpool)
Searches the given collection for the k nearest neighbors for every data point in the given search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.getKthNeighborStats(VectorCollection<V0> collection,
List<V1> search,
int k)
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.getKthNeighborStats(VectorCollection<V0> collection,
List<V1> search,
int k,
ExecutorService threadpool)
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.getKthNeighborStats(VectorCollection<V0> collection,
V1[] search,
int k)
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
|
static <V0 extends Vec,V1 extends Vec> |
VectorCollectionUtils.getKthNeighborStats(VectorCollection<V0> collection,
V1[] search,
int k,
ExecutorService threadpool)
Computes statistics about the distance of the k'th nearest neighbor for each data point in the search list.
|
Modifier and Type | Class and Description |
---|---|
class |
RandomProjectionLSH<V extends Vec>
An implementation of Locality Sensitive Hashing for the
CosineDistance using random projections. |
Modifier and Type | Method and Description |
---|---|
VectorCollection<V> |
RandomProjectionLSH.clone() |
VectorCollection<V> |
RandomProjectionLSH.RandomProjectionLSHFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric) |
VectorCollection<V> |
RandomProjectionLSH.RandomProjectionLSHFactory.getVectorCollection(List<V> source,
DistanceMetric distanceMetric,
ExecutorService threadpool) |
Copyright © 2017. All rights reserved.