Modifier and Type | Method and Description |
---|---|
Matrix |
DataSet.getDataMatrix()
Creates a matrix from the data set, where each row represent a data
point, and each column is one of the numeric example from the data set.
|
Matrix |
DataSet.getDataMatrixView()
Creates a matrix backed by the data set, where each row is a data point
from the dataset, and each column is one of the numeric examples from the
data set.
|
Modifier and Type | Method and Description |
---|---|
void |
TanhLayer.activate(Matrix input,
Matrix output,
boolean rowMajor) |
void |
SoftSignLayer.activate(Matrix input,
Matrix output,
boolean rowMajor) |
void |
SoftmaxLayer.activate(Matrix input,
Matrix output,
boolean rowMajor) |
void |
SigmoidLayer.activate(Matrix input,
Matrix output,
boolean rowMajor) |
void |
ReLU.activate(Matrix input,
Matrix output,
boolean rowMajor) |
void |
LinearLayer.activate(Matrix input,
Matrix output,
boolean rowMajor) |
void |
ActivationLayer.activate(Matrix input,
Matrix output,
boolean rowMajor)
Computes the activation function of this layer on the given input.
|
void |
TanhLayer.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor) |
void |
SoftSignLayer.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor) |
void |
SoftmaxLayer.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor) |
void |
SigmoidLayer.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor) |
void |
ReLU.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor) |
void |
LinearLayer.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor) |
void |
ActivationLayer.backprop(Matrix input,
Matrix output,
Matrix delta_partial,
Matrix errout,
boolean rowMajor)
This method computes the backpropagated error to a given layer.
|
Modifier and Type | Method and Description |
---|---|
void |
WeightInitializer.init(Matrix w,
Random rand)
Initializes the values of the given weight matrix
|
void |
TanhInitializer.init(Matrix w,
Random rand) |
void |
GaussianNormalInit.init(Matrix w,
Random rand) |
Modifier and Type | Method and Description |
---|---|
void |
WeightRegularizer.applyRegularization(Matrix W,
Vec b)
Applies regularization to one matrix, where the rows of the matrix
correspond tot he weights associated to one neuron's input.
|
void |
Max2NormRegularizer.applyRegularization(Matrix W,
Vec b) |
void |
WeightRegularizer.applyRegularization(Matrix W,
Vec b,
ExecutorService ex)
Applies regularization to one matrix, where the rows of the matrix
correspond tot he weights associated to one neuron's input.
|
void |
Max2NormRegularizer.applyRegularization(Matrix W,
Vec b,
ExecutorService ex) |
Modifier and Type | Method and Description |
---|---|
protected double |
EMGaussianMixture.clusterCompute(int K,
DataSet dataSet,
int[] assignment,
List<Vec> means,
List<Matrix> covs,
ExecutorService execServ) |
Modifier and Type | Field and Description |
---|---|
protected Matrix |
WhitenedPCA.transform
The final transformation matrix, that will create new points
y = transform * x
|
Modifier and Type | Method and Description |
---|---|
SimpleDataSet |
MDS.transform(Matrix delta) |
SimpleDataSet |
MDS.transform(Matrix delta,
ExecutorService ex) |
Modifier and Type | Field and Description |
---|---|
protected Matrix |
KernelPoint.InvK |
protected Matrix |
KernelPoint.InvKExpanded |
protected Matrix |
KernelPoint.K |
protected Matrix |
KernelPoint.KExpanded |
Modifier and Type | Method and Description |
---|---|
void |
NormalM.setCovariance(Matrix covMatrix)
Sets the covariance matrix for this matrix.
|
void |
NormalM.setMeanCovariance(Vec mean,
Matrix covariance)
Sets the mean and covariance for this distribution.
|
Constructor and Description |
---|
NormalM(Vec mean,
Matrix covariance) |
Modifier and Type | Class and Description |
---|---|
class |
DenseMatrix |
class |
GenericMatrix
This Class provides default implementations of most all functions in row major form.
|
class |
MatrixOfVecs
This class provides a base mechanism to create a Matrix 'view' from a list of
Vec objects. |
class |
RandomMatrix
Stores a Matrix full of random values in constant O(1) space by re-computing
all matrix values on the fly as need.
|
class |
SparseMatrix
Creates a new Sparse Matrix where each row is backed by a sparse vector.
|
class |
SubMatrix
This class allows for the selection of an area of a matrix to operate on independently.
|
class |
TransposeView
This class provides a free view of the transpose of a matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
Matrix.add(double c)
Creates a new Matrix that stores the result of
A+c |
Matrix |
Matrix.add(double c,
ExecutorService threadPool)
Creates a new Matrix that stores the result of
A+c |
Matrix |
Matrix.add(Matrix B)
Creates a new Matrix that stores the result of
A+B |
Matrix |
Matrix.add(Matrix B,
ExecutorService threadPool)
Creates a new Matrix that stores the result of
A+B |
static Matrix |
LUPDecomposition.backSub(Matrix U,
Matrix y)
Solves for the matrix x such that U x = y
|
static Matrix |
LUPDecomposition.backSub(Matrix U,
Matrix y,
ExecutorService threadpool)
Solves for the matrix x such that U x = y
|
abstract Matrix |
Matrix.clone() |
Matrix |
GenericMatrix.clone() |
static Matrix |
MatrixStatistics.covarianceMatrix(Vec mean,
DataSet dataSet)
Computes the weighted covariance matrix of the data set
|
static <V extends Vec> |
MatrixStatistics.covarianceMatrix(Vec mean,
List<V> dataSet) |
static Matrix |
Matrix.diag(Vec a)
Returns a new dense square matrix such that the main diagonal contains
the values given in a
|
static Matrix |
LUPDecomposition.forwardSub(Matrix L,
Matrix b)
Solves for the matrix x such that L x = b
|
static Matrix |
LUPDecomposition.forwardSub(Matrix L,
Matrix b,
ExecutorService threadpool)
Solves for the matrix x such that L x = b
|
Matrix |
SubMatrix.getBaseMatrix()
Returns the matrix that is the base for this sub matrix.
|
Matrix |
EigenValueDecomposition.getD()
Return the block diagonal eigenvalue matrix
|
Matrix |
CholeskyDecomposition.getLT()
The Cholesky Decomposition computes the factorization A = L LT.
|
protected Matrix |
TransposeView.getMatrixOfSameType(int rows,
int cols) |
protected Matrix |
SubMatrix.getMatrixOfSameType(int rows,
int cols) |
protected Matrix |
RandomMatrix.getMatrixOfSameType(int rows,
int cols) |
protected Matrix |
MatrixOfVecs.getMatrixOfSameType(int rows,
int cols) |
protected abstract Matrix |
GenericMatrix.getMatrixOfSameType(int rows,
int cols)
Creates a new matrix of the same type
|
protected Matrix |
DenseMatrix.getMatrixOfSameType(int rows,
int cols) |
Matrix |
SingularValueDecomposition.getPseudoInverse()
Returns the Moore–Penrose pseudo inverse of the matrix.
|
Matrix |
SingularValueDecomposition.getPseudoInverse(double tol)
Returns the Moore–Penrose pseudo inverse of the matrix.
|
Matrix |
SingularValueDecomposition.getS()
Returns the diagonal matrix S such that the SVD product results in the original matrix.
|
Matrix |
SingularValueDecomposition.getU()
Returns the backing matrix U of the SVD.
|
Matrix |
SingularValueDecomposition.getV()
Returns the backing matrix V of the SVD.
|
Matrix |
EigenValueDecomposition.getV()
Return a copy of the eigenvector matrix
|
Matrix |
EigenValueDecomposition.getVRaw()
Returns the raw eigenvector matrix.
|
Matrix |
EigenValueDecomposition.getVT()
Returns a copy of the transposed eigenvector matrix.
|
Matrix[] |
SparseMatrix.lup() |
abstract Matrix[] |
Matrix.lup() |
Matrix[] |
GenericMatrix.lup() |
Matrix[] |
DenseMatrix.lup() |
Matrix[] |
SparseMatrix.lup(ExecutorService threadPool) |
abstract Matrix[] |
Matrix.lup(ExecutorService threadPool) |
Matrix[] |
GenericMatrix.lup(ExecutorService threadPool) |
Matrix[] |
DenseMatrix.lup(ExecutorService threadPool) |
Matrix |
Matrix.multiply(double c)
Creates a new Matrix that stores A*c
|
Matrix |
Matrix.multiply(double c,
ExecutorService threadPool)
Creates a new Matrix that stores A*c
|
Matrix |
Matrix.multiply(Matrix B)
Creates a new matrix that stores A*B
|
Matrix |
Matrix.multiply(Matrix B,
ExecutorService threadPool)
Creates a new matrix that stores A*B
|
Matrix |
Matrix.multiplyTranspose(Matrix B)
Returns the new matrix C that is C = A*BT
|
Matrix |
Matrix.multiplyTranspose(Matrix B,
ExecutorService threadPool)
Returns the new matrix C that is C = A*BT
|
static Matrix |
Matrix.pascal(int size)
Creates a new square matrix that is a pascal matrix.
|
Matrix[] |
SparseMatrix.qr() |
abstract Matrix[] |
Matrix.qr() |
Matrix[] |
GenericMatrix.qr() |
Matrix[] |
DenseMatrix.qr() |
Matrix[] |
SparseMatrix.qr(ExecutorService threadPool) |
abstract Matrix[] |
Matrix.qr(ExecutorService threadPool) |
Matrix[] |
GenericMatrix.qr(ExecutorService threadPool) |
Matrix[] |
DenseMatrix.qr(ExecutorService threadPool) |
Matrix |
SingularValueDecomposition.solve(Matrix B)
Solves the linear system of equations for A x = B by using the equation
x = A-1 B = V S-1 UT B
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error. |
Matrix |
QRDecomposition.solve(Matrix B) |
Matrix |
LUPDecomposition.solve(Matrix B) |
Matrix |
CholeskyDecomposition.solve(Matrix B)
Solves the linear system of equations A x = B
|
Matrix |
SingularValueDecomposition.solve(Matrix b,
ExecutorService threadpool)
Solves the linear system of equations for A x = B by using the equation
x = A-1 B = V S-1 UT B
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error. |
Matrix |
QRDecomposition.solve(Matrix B,
ExecutorService threadpool) |
Matrix |
LUPDecomposition.solve(Matrix B,
ExecutorService threadpool) |
Matrix |
CholeskyDecomposition.solve(Matrix B,
ExecutorService threadpool)
Solves the linear system of equations A x = B
|
Matrix |
Matrix.subtract(double c)
Creates a new Matrix that stores the result of A-c
|
Matrix |
Matrix.subtract(double c,
ExecutorService threadPool)
Creates a new Matrix that stores the result of A-c
|
Matrix |
Matrix.subtract(Matrix B)
Creates a new Matrix that stores the result of A-B
|
Matrix |
Matrix.subtract(Matrix B,
ExecutorService threadPool)
Creates a new Matrix that stores the result of A-B
|
Matrix |
Matrix.transpose()
Returns a new matrix that is the transpose of this matrix.
|
Matrix |
Matrix.transposeMultiply(Matrix B)
Creates a new matrix equal to A'*B, or the same result as
A. |
Matrix |
Matrix.transposeMultiply(Matrix B,
ExecutorService threadPool)
Computes the result matrix of A'*B, or the same result as
A. |
Modifier and Type | Method and Description |
---|---|
Matrix |
Matrix.add(Matrix B)
Creates a new Matrix that stores the result of
A+B |
Matrix |
Matrix.add(Matrix B,
ExecutorService threadPool)
Creates a new Matrix that stores the result of
A+B |
static void |
RowColumnOps.addCol(Matrix A,
int j,
double c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+ c
|
static void |
RowColumnOps.addCol(Matrix A,
int j,
int start,
int to,
double c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+ c
|
static void |
RowColumnOps.addDiag(Matrix A,
int start,
int to,
double c)
Updates the values along the main diagonal of the matrix by adding a constant to them
|
static void |
RowColumnOps.addMultCol(Matrix A,
int j,
int start,
int to,
double t,
double[] c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+c[:]*t.
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range. |
static void |
RowColumnOps.addMultCol(Matrix A,
int j,
int start,
int to,
double t,
Vec c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]+c[:]*t.
The Matrix A and vector c do not need to have the same dimensions, so long as they both have indices in the given range. |
static void |
RowColumnOps.addMultRow(Matrix A,
int i,
int start,
int to,
double t,
double[] c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+c[:]*t.
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range. |
static void |
RowColumnOps.addMultRow(Matrix A,
int i,
int start,
int to,
double t,
Vec c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+c[:]*t.
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range. |
static void |
RowColumnOps.addRow(Matrix A,
int i,
double c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+ c
|
static void |
RowColumnOps.addRow(Matrix A,
int i,
int start,
int to,
double c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:]+ c
|
static Matrix |
LUPDecomposition.backSub(Matrix U,
Matrix y)
Solves for the matrix x such that U x = y
|
static Matrix |
LUPDecomposition.backSub(Matrix U,
Matrix y,
ExecutorService threadpool)
Solves for the matrix x such that U x = y
|
static Vec |
LUPDecomposition.backSub(Matrix U,
Vec y)
Solves for the vector x such that U x = y
|
static boolean |
Matrix.canMultiply(Matrix A,
Matrix B)
Convenience method that will return
true only if the two input
matrices have dimensions compatible for multiplying A*B |
void |
Matrix.copyTo(Matrix other)
Copes the values of this matrix into the other matrix of the same dimensions
|
void |
Vec.copyToCol(Matrix A,
int col)
Copies the values of this vector into a column of another Matrix.
|
void |
Vec.copyToRow(Matrix A,
int row)
Copies the values of this vector into a row of another Matrix
|
static void |
MatrixStatistics.covarianceMatrix(Vec mean,
DataSet dataSet,
Matrix covariance)
Computes the weighted covariance matrix of the given data set.
|
static void |
MatrixStatistics.covarianceMatrix(Vec mean,
DataSet dataSet,
Matrix covariance,
double sumOfWeights,
double sumOfSquaredWeights)
Computes the weighted covariance matrix of the given data set.
|
static void |
MatrixStatistics.covarianceMatrix(Vec mean,
List<DataPoint> dataSet,
Matrix covariance)
Computes the weighted result for the covariance matrix of the given data set.
|
static void |
MatrixStatistics.covarianceMatrix(Vec mean,
List<DataPoint> dataSet,
Matrix covariance,
double sumOfWeights,
double sumOfSquaredWeights)
Computes the weighted result for the covariance matrix of the given data set.
|
static <V extends Vec> |
MatrixStatistics.covarianceMatrix(Vec mean,
Matrix covariance,
List<V> dataSet) |
static void |
Matrix.diagMult(Matrix A,
Vec b)
Alters the matrix A so that it contains the result of A
times a sparse matrix represented by only its diagonal values or
A = A*diag(b).
|
static void |
Matrix.diagMult(Vec b,
Matrix A)
Alters the matrix A so that it contains the result of
sparse matrix represented by only its diagonal values times A or
A = diag(b)*A.
|
static void |
RowColumnOps.divCol(Matrix A,
int j,
double c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c
|
static void |
RowColumnOps.divCol(Matrix A,
int j,
int start,
int to,
double c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c
|
static void |
RowColumnOps.divCol(Matrix A,
int j,
int start,
int to,
double[] c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c[j].
The Matrix A and array c do not need to have the same dimensions, so long as they both have indices in the given range. |
static void |
RowColumnOps.divCol(Matrix A,
int j,
int start,
int to,
Vec c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]/c[j].
The Matrix A and vector c do not need to have the same dimensions, so long as they both have indices in the given range. |
static void |
RowColumnOps.divRow(Matrix A,
int i,
double c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] / c
|
static void |
RowColumnOps.divRow(Matrix A,
int i,
int start,
int to,
double c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] / c
|
static void |
RowColumnOps.fillCol(Matrix A,
int j,
int from,
int to,
double val)
Fills the values in a column of the matrix
|
static void |
RowColumnOps.fillRow(Matrix A,
int i,
int from,
int to,
double val)
Fills the values in a row of the matrix
|
static Matrix |
LUPDecomposition.forwardSub(Matrix L,
Matrix b)
Solves for the matrix x such that L x = b
|
static Matrix |
LUPDecomposition.forwardSub(Matrix L,
Matrix b,
ExecutorService threadpool)
Solves for the matrix x such that L x = b
|
static Vec |
LUPDecomposition.forwardSub(Matrix L,
Vec b)
Solves for the vector x such that L x = b
|
static void |
HessenbergForm.hess(Matrix A) |
static void |
HessenbergForm.hess(Matrix A,
ExecutorService threadpool)
Alters the matrix A such that it is in upper Hessenberg form.
|
static boolean |
Matrix.isSymmetric(Matrix A)
Checks to see if the given input is a perfectly symmetric matrix
|
static boolean |
Matrix.isSymmetric(Matrix A,
double eps)
Checks to see if the given input is approximately symmetric.
|
static void |
RowColumnOps.multCol(Matrix A,
int j,
double c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]* c
|
static void |
RowColumnOps.multCol(Matrix A,
int j,
int start,
int to,
double c)
Updates the values of column j in the given matrix to be A[:,j] = A[:,j]* c
|
void |
VecPaired.multiply(double c,
Matrix A,
Vec b) |
void |
Vec.multiply(double c,
Matrix A,
Vec b)
If this is vector a, this this computes b = b + c aT*A
|
void |
SparseVector.multiply(double c,
Matrix A,
Vec b) |
void |
ScaledVector.multiply(double c,
Matrix A,
Vec b) |
void |
RandomVector.multiply(double c,
Matrix A,
Vec b) |
void |
DenseVector.multiply(double c,
Matrix A,
Vec b) |
Vec |
Vec.multiply(Matrix A)
Returns a new vector that is the result of the vector matrix product
thisTA
|
Matrix |
Matrix.multiply(Matrix B)
Creates a new matrix that stores A*B
|
Matrix |
Matrix.multiply(Matrix B,
ExecutorService threadPool)
Creates a new matrix that stores A*B
|
void |
SparseMatrix.multiply(Matrix B,
Matrix C) |
abstract void |
Matrix.multiply(Matrix B,
Matrix C)
Alters the matrix C to be equal to C = C+A*B
|
void |
GenericMatrix.multiply(Matrix b,
Matrix C) |
void |
DenseMatrix.multiply(Matrix b,
Matrix C) |
void |
SparseMatrix.multiply(Matrix B,
Matrix C,
ExecutorService threadPool) |
abstract void |
Matrix.multiply(Matrix B,
Matrix C,
ExecutorService threadPool)
Alters the matrix C to be equal to C = C+A*B
|
void |
GenericMatrix.multiply(Matrix b,
Matrix C,
ExecutorService threadPool) |
void |
DenseMatrix.multiply(Matrix b,
Matrix C,
ExecutorService threadPool) |
void |
Vec.multiply(Matrix A,
Vec b)
If this is vector a, this this computes b = b + aT*A
|
Matrix |
Matrix.multiplyTranspose(Matrix B)
Returns the new matrix C that is C = A*BT
|
Matrix |
Matrix.multiplyTranspose(Matrix B,
ExecutorService threadPool)
Returns the new matrix C that is C = A*BT
|
void |
SparseMatrix.multiplyTranspose(Matrix B,
Matrix C) |
abstract void |
Matrix.multiplyTranspose(Matrix B,
Matrix C)
Alters the matrix C to be equal to C = C+A*BT
|
void |
GenericMatrix.multiplyTranspose(Matrix b,
Matrix C) |
void |
SparseMatrix.multiplyTranspose(Matrix B,
Matrix C,
ExecutorService threadPool) |
abstract void |
Matrix.multiplyTranspose(Matrix B,
Matrix C,
ExecutorService threadPool)
Alters the matrix C to be equal to C = C+A*BT
|
void |
GenericMatrix.multiplyTranspose(Matrix b,
Matrix C,
ExecutorService threadPool) |
static void |
RowColumnOps.multRow(Matrix A,
int i,
double c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] * c
|
static void |
RowColumnOps.multRow(Matrix A,
int i,
double[] c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i]
|
static void |
RowColumnOps.multRow(Matrix A,
int i,
int start,
int to,
double c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] * c
|
static void |
RowColumnOps.multRow(Matrix A,
int i,
int start,
int to,
double[] c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i]
The Matrix A and array c do not need to have the same dimensions,
so long as they both have indices in the given range.
|
static void |
RowColumnOps.multRow(Matrix A,
int i,
int start,
int to,
Vec c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i]
The Matrix A and vector c do not need to have the same dimensions,
so long as they both have indices in the given range.
|
static void |
RowColumnOps.multRow(Matrix A,
int i,
Vec c)
Updates the values of row i in the given matrix to be A[i,:] = A[i,:] .* c[i]
The Matrix A and vector c do not need to have the same dimensions,
so long as they both have indices in the given range.
|
void |
SparseMatrix.mutableAdd(double c,
Matrix B) |
abstract void |
Matrix.mutableAdd(double c,
Matrix B)
Alters the current matrix to store the value A+c*B
|
void |
GenericMatrix.mutableAdd(double c,
Matrix b) |
void |
DenseMatrix.mutableAdd(double c,
Matrix b) |
void |
SparseMatrix.mutableAdd(double c,
Matrix B,
ExecutorService threadPool) |
abstract void |
Matrix.mutableAdd(double c,
Matrix B,
ExecutorService threadPool)
Alters the current matrix to store the value A+c*B
|
void |
GenericMatrix.mutableAdd(double c,
Matrix b,
ExecutorService threadPool) |
void |
Matrix.mutableAdd(Matrix B)
Alters the current matrix to store the value A+B
|
void |
Matrix.mutableAdd(Matrix B,
ExecutorService threadpool)
Alters the current matrix to store the value A+B
|
void |
Matrix.mutableSubtract(double c,
Matrix B)
Alters the current matrix to store A-c*B
|
void |
Matrix.mutableSubtract(double c,
Matrix B,
ExecutorService threadPool)
Alters the current matrix to store A-c*B
|
void |
Matrix.mutableSubtract(Matrix B)
Alters the current matrix to store A-B
|
void |
Matrix.mutableSubtract(Matrix B,
ExecutorService threadpool)
Alters the current matrix to store A-B
|
static void |
Matrix.OuterProductUpdate(Matrix A,
Vec x,
Vec y,
double c)
Alters the matrix A such that,
A = A + c * x * y'
|
static void |
Matrix.OuterProductUpdate(Matrix A,
Vec x,
Vec y,
double c,
ExecutorService threadpool)
Alters the matrix A such that,
A = A + c * x * y'
|
static boolean |
Matrix.sameDimensions(Matrix A,
Matrix B)
Convenience method that will return
true only if the two input
matrices have the exact same dimensions. |
Matrix |
SingularValueDecomposition.solve(Matrix B)
Solves the linear system of equations for A x = B by using the equation
x = A-1 B = V S-1 UT B
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error. |
Matrix |
QRDecomposition.solve(Matrix B) |
Matrix |
LUPDecomposition.solve(Matrix B) |
Matrix |
CholeskyDecomposition.solve(Matrix B)
Solves the linear system of equations A x = B
|
Matrix |
SingularValueDecomposition.solve(Matrix b,
ExecutorService threadpool)
Solves the linear system of equations for A x = B by using the equation
x = A-1 B = V S-1 UT B
When A is not full rank, this results in a more numerically stable approximation that minimizes the least squares error. |
Matrix |
QRDecomposition.solve(Matrix B,
ExecutorService threadpool) |
Matrix |
LUPDecomposition.solve(Matrix B,
ExecutorService threadpool) |
Matrix |
CholeskyDecomposition.solve(Matrix B,
ExecutorService threadpool)
Solves the linear system of equations A x = B
|
Matrix |
Matrix.subtract(Matrix B)
Creates a new Matrix that stores the result of A-B
|
Matrix |
Matrix.subtract(Matrix B,
ExecutorService threadPool)
Creates a new Matrix that stores the result of A-B
|
static void |
RowColumnOps.swapCol(Matrix A,
int j,
int k)
Swaps the columns j and k in the given matrix.
|
static void |
RowColumnOps.swapCol(Matrix A,
int j,
int k,
int start,
int to)
Swaps the columns j and k in the given matrix.
|
static void |
RowColumnOps.swapRow(Matrix A,
int j,
int k)
Swaps the columns j and k in the given matrix.
|
static void |
RowColumnOps.swapRow(Matrix A,
int j,
int k,
int start,
int to)
Swaps the rows j and k in the given matrix.
|
void |
SparseMatrix.transpose(Matrix C) |
abstract void |
Matrix.transpose(Matrix C)
Overwrites the values stored in matrix C to store the value of
A'
|
void |
GenericMatrix.transpose(Matrix C) |
void |
DenseMatrix.transpose(Matrix C) |
Matrix |
Matrix.transposeMultiply(Matrix B)
Creates a new matrix equal to A'*B, or the same result as
A. |
Matrix |
Matrix.transposeMultiply(Matrix B,
ExecutorService threadPool)
Computes the result matrix of A'*B, or the same result as
A. |
void |
SparseMatrix.transposeMultiply(Matrix B,
Matrix C) |
abstract void |
Matrix.transposeMultiply(Matrix B,
Matrix C)
Alters the matrix C so that C = C + A'*B
|
void |
GenericMatrix.transposeMultiply(Matrix b,
Matrix C) |
void |
DenseMatrix.transposeMultiply(Matrix b,
Matrix C) |
void |
SparseMatrix.transposeMultiply(Matrix B,
Matrix C,
ExecutorService threadPool) |
abstract void |
Matrix.transposeMultiply(Matrix B,
Matrix C,
ExecutorService threadPool)
Alters the matrix C so that C = C + A'*B
|
void |
GenericMatrix.transposeMultiply(Matrix b,
Matrix C,
ExecutorService threadPool) |
void |
DenseMatrix.transposeMultiply(Matrix b,
Matrix C,
ExecutorService threadPool) |
Constructor and Description |
---|
CholeskyDecomposition(Matrix A)
Computes the Cholesky Decomposition of the matrix A.
|
CholeskyDecomposition(Matrix A,
ExecutorService threadpool)
Computes the Cholesky Decomposition of the matrix A.
|
DenseMatrix(Matrix toCopy)
Creates a new dense matrix that has a copy of all the same values as the
given one
|
EigenValueDecomposition(Matrix A)
Creates a new new Eigen Value Decomposition.
|
EigenValueDecomposition(Matrix A,
double eps)
Creates a new new Eigen Value Decomposition.
|
LUPDecomposition(Matrix A) |
LUPDecomposition(Matrix A,
ExecutorService threadpool) |
LUPDecomposition(Matrix L,
Matrix U,
Matrix P) |
QRDecomposition(Matrix A) |
QRDecomposition(Matrix A,
ExecutorService threadpool) |
QRDecomposition(Matrix Q,
Matrix R) |
SingularValueDecomposition(Matrix A)
Creates a new SVD of the matrix
A such that A = U Σ VT. |
SingularValueDecomposition(Matrix A,
int maxIterations)
Creates a new SVD of the matrix
A such that A = U Σ VT. |
SingularValueDecomposition(Matrix U,
Matrix V,
double[] s)
Sets the values for a SVD explicitly.
|
SubMatrix(Matrix baseMatrix,
int firstRow,
int firstColumn,
int toRow,
int toCol)
Creates a new matrix that is a sub view of the given base matrix.
|
TransposeView(Matrix base) |
Modifier and Type | Method and Description |
---|---|
static Vec |
ConjugateGradient.solve(double eps,
Matrix A,
Vec x,
Vec b)
Uses the Conjugate Gradient method to solve a linear system of
equations involving a symmetric positive definite matrix.
A symmetric positive definite matrix is a matrix A such that: AT = A xT * A * x > 0 for all x != 0 NOTE: No checks will be performed to confirm these properties of the given matrix. |
static Vec |
ConjugateGradient.solve(double eps,
Matrix A,
Vec x,
Vec b,
Matrix Minv)
Uses the Conjugate Gradient method to solve a linear system of
equations involving a symmetric positive definite matrix.
A symmetric positive definite matrix is a matrix A such that: AT = A xT * A * x > 0 for all x != 0 NOTE: No checks will be performed to confirm these properties of the given matrix. |
static Vec |
ConjugateGradient.solve(Matrix A,
Vec b) |
static Vec |
ConjugateGradient.solveCGNR(double eps,
Matrix A,
Vec x,
Vec b)
Uses the Conjugate Gradient method to compute the least squares solution to a system
of linear equations.
Computes the least squares solution to A x = b. |
static Vec |
ConjugateGradient.solveCGNR(Matrix A,
Vec b) |
Modifier and Type | Method and Description |
---|---|
Matrix |
FunctionMat.f(double... x)
Computes a matrix based on multivariate input
|
Matrix |
FunctionMat.f(Vec x)
Computes a matrix based on multivariate input
|
Matrix |
FunctionMat.f(Vec x,
Matrix s)
Computes a matrix based on multivariate input
|
Matrix |
FunctionMat.f(Vec x,
Matrix s,
ExecutorService ex)
Computes a matrix based on multivariate input
|
Modifier and Type | Method and Description |
---|---|
Matrix |
FunctionMat.f(Vec x,
Matrix s)
Computes a matrix based on multivariate input
|
Matrix |
FunctionMat.f(Vec x,
Matrix s,
ExecutorService ex)
Computes a matrix based on multivariate input
|
Copyright © 2017. All rights reserved.