Package | Description |
---|---|
jsat.classifiers.bayesian | |
jsat.classifiers.boosting | |
jsat.distributions | |
jsat.distributions.empirical | |
jsat.testing.goodnessoffit | |
jsat.utils |
Modifier and Type | Method and Description |
---|---|
protected abstract ContinuousDistribution |
NaiveBayes.NumericalHandeling.fit(Vec y) |
Modifier and Type | Method and Description |
---|---|
ContinuousDistribution |
WaggingNormal.getDistribution() |
ContinuousDistribution |
Wagging.getDistribution()
Returns the distribution used for weight sampling
|
Modifier and Type | Method and Description |
---|---|
void |
WaggingNormal.setDistribution(ContinuousDistribution dist) |
void |
Wagging.setDistribution(ContinuousDistribution dist)
Sets the distribution to select the random weights from
|
Constructor and Description |
---|
Wagging(ContinuousDistribution dist,
Classifier weakL,
int iterations)
Creates a new Wagging classifier
|
Wagging(ContinuousDistribution dist,
Regressor weakR,
int iterations)
Creates a new Wagging regressor
|
Modifier and Type | Class and Description |
---|---|
class |
Beta |
class |
Cauchy |
class |
ChiSquared |
class |
Exponential |
class |
FisherSendor
Also known as the F distribution.
|
class |
Gamma |
class |
Kolmogorov |
class |
Laplace |
class |
Levy
Implementation of the
Levy
ContinuousDistribution
|
class |
Logistic |
class |
LogNormal |
class |
LogUniform
The Log Uniform distribution is such that if X is the distribution, then Y =
log(X) is uniformly distributed.
|
class |
MaxwellBoltzmann |
class |
Normal |
class |
Pareto |
class |
Rayleigh |
class |
StudentT |
class |
TruncatedDistribution
This distribution truncates a given continuous distribution only be valid for
values in the range (min, max].
|
class |
Uniform |
class |
Weibull |
Modifier and Type | Method and Description |
---|---|
ContinuousDistribution |
Weibull.clone() |
ContinuousDistribution |
Uniform.clone() |
ContinuousDistribution |
StudentT.clone() |
ContinuousDistribution |
Rayleigh.clone() |
ContinuousDistribution |
Pareto.clone() |
ContinuousDistribution |
Normal.clone() |
ContinuousDistribution |
MaxwellBoltzmann.clone() |
ContinuousDistribution |
LogNormal.clone() |
ContinuousDistribution |
Logistic.clone() |
ContinuousDistribution |
Laplace.clone() |
ContinuousDistribution |
Kolmogorov.clone() |
ContinuousDistribution |
Gamma.clone() |
ContinuousDistribution |
FisherSendor.clone() |
ContinuousDistribution |
Exponential.clone() |
abstract ContinuousDistribution |
ContinuousDistribution.clone() |
ContinuousDistribution |
ChiSquared.clone() |
ContinuousDistribution |
Cauchy.clone() |
ContinuousDistribution |
Beta.clone() |
static ContinuousDistribution |
DistributionSearch.getBestDistribution(Vec v)
Searches the distributions that are known for a possible fit, and returns
what appears to be the best fit.
|
static ContinuousDistribution |
DistributionSearch.getBestDistribution(Vec v,
ContinuousDistribution... possibleDistributions)
Searches the distributions that are given for a possible fit, and returns
what appears to be the best fit.
|
static ContinuousDistribution |
DistributionSearch.getBestDistribution(Vec v,
double KDECutOff)
Searches the distributions that are known for a possible fit, and returns
what appears to be the best fit.
|
static ContinuousDistribution |
DistributionSearch.getBestDistribution(Vec v,
double KDECutOff,
ContinuousDistribution... possibleDistributions)
Searches the distributions that are given for a possible fit, and returns
what appears to be the best fit.
|
Modifier and Type | Method and Description |
---|---|
static ContinuousDistribution |
DistributionSearch.getBestDistribution(Vec v,
ContinuousDistribution... possibleDistributions)
Searches the distributions that are given for a possible fit, and returns
what appears to be the best fit.
|
static ContinuousDistribution |
DistributionSearch.getBestDistribution(Vec v,
double KDECutOff,
ContinuousDistribution... possibleDistributions)
Searches the distributions that are given for a possible fit, and returns
what appears to be the best fit.
|
static Function |
ContinuousDistribution.getFunctionPDF(ContinuousDistribution dist)
Wraps the
pdf(double) function of the given distribution in a
function object for use. |
Constructor and Description |
---|
TruncatedDistribution(ContinuousDistribution base,
double min,
double max) |
Modifier and Type | Class and Description |
---|---|
class |
KernelDensityEstimator
Kernel Density Estimator, KDE, uses the data set itself to approximate the underlying probability
distribution using
Kernel Functions . |
Modifier and Type | Method and Description |
---|---|
protected double |
KSTest.dCalc(ContinuousDistribution cd)
Calculates the D statistic for comparison against a continous distribution
|
double |
KSTest.testDist(ContinuousDistribution cd)
Returns the p-value for the KS Test against the given distribution cd.
|
Constructor and Description |
---|
GridDataGenerator(ContinuousDistribution noiseSource,
int... dimensions)
Creates a new Grid data generator, that can be queried for new data sets.
|
GridDataGenerator(ContinuousDistribution noiseSource,
Random rand,
int... dimensions)
Creates a new Grid data generator, that can be queried for new data sets.
|
Copyright © 2017. All rights reserved.