Package | Description |
---|---|
jsat.classifiers.neuralnetwork | |
jsat.clustering | |
jsat.clustering.kmeans |
Modifier and Type | Field and Description |
---|---|
static SeedSelectionMethods.SeedSelection |
LVQ.DEFAULT_SEED_SELECTION
The default seed selection method is SeedSelection.KPP
|
Modifier and Type | Method and Description |
---|---|
SeedSelectionMethods.SeedSelection |
LVQ.getSeedSelection()
Returns the method of seed selection used
|
Modifier and Type | Method and Description |
---|---|
void |
LVQ.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection)
Sets the seed selection method used to select the initial learning vectors
|
Modifier and Type | Field and Description |
---|---|
protected SeedSelectionMethods.SeedSelection |
PAM.seedSelection |
Modifier and Type | Method and Description |
---|---|
SeedSelectionMethods.SeedSelection |
PAM.getSeedSelection() |
SeedSelectionMethods.SeedSelection |
EMGaussianMixture.getSeedSelection() |
static SeedSelectionMethods.SeedSelection |
SeedSelectionMethods.SeedSelection.valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static SeedSelectionMethods.SeedSelection[] |
SeedSelectionMethods.SeedSelection.values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
Modifier and Type | Method and Description |
---|---|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod)
Selects seeds from a data set to use for a clustering algorithm.
|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod)
Selects seeds from a data set to use for a clustering algorithm.
|
static void |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int[] indices,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod) |
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
List<Double> accelCache,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod)
Selects seeds from a data set to use for a clustering algorithm.
|
static List<Vec> |
SeedSelectionMethods.selectIntialPoints(DataSet d,
int k,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection selectionMethod,
ExecutorService threadpool)
Selects seeds from a data set to use for a clustering algorithm.
|
void |
PAM.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection)
Sets the method of seed selection used by this algorithm
|
void |
EMGaussianMixture.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection)
Sets the method of seed selection to use for this algorithm.
|
Constructor and Description |
---|
CLARA(DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
CLARA(int sampleCount,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
CLARA(int sampleSize,
int sampleCount,
DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
EMGaussianMixture(SeedSelectionMethods.SeedSelection seedSelection) |
PAM(DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection) |
Modifier and Type | Field and Description |
---|---|
static SeedSelectionMethods.SeedSelection |
KMeans.DEFAULT_SEED_SELECTION
This is the default seed selection method used in ElkanKMeans.
|
protected SeedSelectionMethods.SeedSelection |
KMeans.seedSelection |
Modifier and Type | Method and Description |
---|---|
SeedSelectionMethods.SeedSelection |
XMeans.getSeedSelection() |
SeedSelectionMethods.SeedSelection |
MiniBatchKMeans.getSeedSelection()
Returns the method of seed selection to use
|
SeedSelectionMethods.SeedSelection |
KMeans.getSeedSelection() |
SeedSelectionMethods.SeedSelection |
GMeans.getSeedSelection() |
Modifier and Type | Method and Description |
---|---|
void |
XMeans.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection) |
void |
MiniBatchKMeans.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection)
Sets the method of selecting the initial data points to
seed the clustering algorithm.
|
void |
KMeans.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection)
Sets the method of seed selection to use for this algorithm.
|
void |
GMeans.setSeedSelection(SeedSelectionMethods.SeedSelection seedSelection) |
Constructor and Description |
---|
ElkanKMeans(DistanceMetric dm,
Random rand,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new KMeans instance.
|
HamerlyKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new k-Means object
|
HamerlyKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection,
Random rand)
Creates a new k-Means object
|
KMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection,
Random rand) |
MiniBatchKMeans(DistanceMetric dm,
int batchSize,
int iterations,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new Mini-Batch k-Means object
|
NaiveKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection)
Creates a new naive k-Means cluster
|
NaiveKMeans(DistanceMetric dm,
SeedSelectionMethods.SeedSelection seedSelection,
Random rand)
Creates a new naive k-Means cluster
|
Copyright © 2017. All rights reserved.